5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intercepting beats in predesignated target zones.

      1 , ,
      Experimental brain research

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moving to a rhythm necessitates precise timing between the movement of the chosen limb and the timing imposed by the beats. However, the temporal information specifying the moment when a beat will sound (the moment onto which one must synchronise one's movement) is not continuously provided by the acoustic array. Because of this informational void, the actors need some form of prospective information that will allow them to act sufficiently ahead of time in order to get their hand in the right place at the right time. In this acoustic interception study, where participants were asked to move between two targets in such a way that they arrived and stopped in the target zone at the same time as a beat sounded, we tested a model derived from tau-coupling theory (Lee DN (1998) Ecol Psychol 10:221-250). This model attempts to explain the form of a potential timing guide that specifies the duration of the inter-beat intervals and also describes how this informational guide can be used in the timing and guidance of movements. The results of our first experiment show that, for inter-beat intervals of less than 3 s, a large proportion of the movement (over 70%) can be explained by the proposed model. However, a second experiment, which augments the time between beats so that it surpasses 3 s, shows a marked decline in the percentage of information/movement coupling. A close analysis of the movement kinematics indicates a lack of control and anticipation in the participants' movements. The implications of these findings, in light of other research studies, are discussed.

          Related collections

          Author and article information

          Journal
          Exp Brain Res
          Experimental brain research
          0014-4819
          0014-4819
          Sep 2005
          : 165
          : 4
          Affiliations
          [1 ] UMR Mouvement et Perception, Faculté des Sciences du Sport, Université de la Méditerranée, 163 Avenue de Luminy, 13288, Marseille, France. craig@laps.univ-mrs.fr
          Article
          10.1007/s00221-005-2322-x
          15912367
          2d3bacd2-a0c2-4101-8b45-dbafd96e0c7a
          History

          Comments

          Comment on this article