2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      How micropatterns affect the anti-icing performance of superhydrophobic surfaces

      , , , ,
      International Journal of Heat and Mass Transfer
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Design of anti-icing surfaces: smooth, textured or slippery?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-icing superhydrophobic coatings.

            We use nanoparticle-polymer composites to demonstrate the anti-icing capability of superhydrophobic surfaces and report direct experimental evidence that such surfaces are able to prevent ice formation upon impact of supercooled water both in laboratory conditions and in natural environments. We find that the anti-icing capability of these composites depends not only on their superhydrophobicity but also on the size of the particles exposed on the surface. The critical particle sizes that determine the superhydrophobicity and the anti-icing property are in two different length scales. The effect of particle size on ice formation is explained by using a classical heterogeneous nucleation theory. This result implies that the anti-icing property of a surface is not directly correlated with the superhydrophobicity, and thus, it is uncertain whether a superhydrophobic surface is anti-icing without detailed knowledge of the surface morphology. The result also opens up possibilities for rational design of anti-icing superhydrophobic surfaces by tuning surface textures in multiple length scales.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reducing the contact time of a bouncing drop.

              Surfaces designed so that drops do not adhere to them but instead bounce off have received substantial attention because of their ability to stay dry, self-clean and resist icing. A drop striking a non-wetting surface of this type will spread out to a maximum diameter and then recoil to such an extent that it completely rebounds and leaves the solid material. The amount of time that the drop is in contact with the solid--the 'contact time'--depends on the inertia and capillarity of the drop, internal dissipation and surface-liquid interactions. And because contact time controls the extent to which mass, momentum and energy are exchanged between drop and surface, it is often advantageous to minimize it. The conventional approach has been to minimize surface-liquid interactions that can lead to contact line pinning; but even in the absence of any surface interactions, drop hydrodynamics imposes a minimum contact time that was conventionally assumed to be attained with axisymmetrically spreading and recoiling drops. Here we demonstrate that it is possible to reduce the contact time below this theoretical limit by using superhydrophobic surfaces with a morphology that redistributes the liquid mass and thereby alters the drop hydrodynamics. We show theoretically and experimentally that this approach allows us to reduce the overall contact time between a bouncing drop and a surface below what was previously thought possible.
                Bookmark

                Author and article information

                Journal
                International Journal of Heat and Mass Transfer
                International Journal of Heat and Mass Transfer
                Elsevier BV
                00179310
                October 2022
                October 2022
                : 195
                : 123196
                Article
                10.1016/j.ijheatmasstransfer.2022.123196
                2d76180e-61eb-4b20-9ab0-9531a99642d6
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article