6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pilus Production in Acinetobacter baumannii Is Growth Phase Dependent and Essential for Natural Transformation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapid bacterial evolution has alarming negative impacts on animal and human health which can occur when pathogens acquire antimicrobial resistance traits. As a major cause of antibiotic-resistant opportunistic infections, A. baumannii is a high-priority health threat which has motivated renewed interest in studying how this pathogen acquires new, dangerous traits.

          ABSTRACT

          Acinetobacter baumannii is a severe threat to human health as a frequently multidrug-resistant hospital-acquired pathogen. Part of the danger from this bacterium comes from its genome plasticity and ability to evolve quickly by taking up and recombining external DNA into its own genome in a process called natural competence for transformation. This mode of horizontal gene transfer is one of the major ways that bacteria can acquire new antimicrobial resistances and toxic traits. Because these processes in A. baumannii are not well studied, we herein characterized new aspects of natural transformability in this species that include the species’ competence window. We uncovered a strong correlation with a growth phase-dependent synthesis of a type IV pilus (TFP), which constitutes the central part of competence-induced DNA uptake machinery. We used bacterial genetics and microscopy to demonstrate that the TFP is essential for the natural transformability and surface motility of A. baumannii, whereas pilus-unrelated proteins of the DNA uptake complex do not affect the motility phenotype. Furthermore, TFP biogenesis and assembly is subject to input from two regulatory systems that are homologous to Pseudomonas aeruginosa, namely, the PilSR two-component system and the Pil-Chp chemosensory system. We demonstrated that these systems affect not only the piliation status of cells but also their ability to take up DNA for transformation. Importantly, we report on discrepancies between TFP biogenesis and natural transformability within the same genus by comparing data for our work on A. baumannii to data reported for Acinetobacter baylyi, the latter of which served for decades as a model for natural competence.

          IMPORTANCE Rapid bacterial evolution has alarming negative impacts on animal and human health which can occur when pathogens acquire antimicrobial resistance traits. As a major cause of antibiotic-resistant opportunistic infections, A. baumannii is a high-priority health threat which has motivated renewed interest in studying how this pathogen acquires new, dangerous traits. In this study, we deciphered a specific time window in which these bacteria can acquire new DNA and correlated that with its ability to produce the external appendages that contribute to the DNA acquisition process. These cell appendages function doubly for motility on surfaces and for DNA uptake. Collectively, we showed that A. baumannii is similar in its TFP production to Pseudomonas aeruginosa, though it differs from the well-studied species A. baylyi.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          The Phyre2 web portal for protein modeling, prediction and analysis.

          Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A One Pot, One Step, Precision Cloning Method with High Throughput Capability

            Current cloning technologies based on site-specific recombination are efficient, simple to use, and flexible, but have the drawback of leaving recombination site sequences in the final construct, adding an extra 8 to 13 amino acids to the expressed protein. We have devised a simple and rapid subcloning strategy to transfer any DNA fragment of interest from an entry clone into an expression vector, without this shortcoming. The strategy is based on the use of type IIs restriction enzymes, which cut outside of their recognition sequence. With proper design of the cleavage sites, two fragments cut by type IIs restriction enzymes can be ligated into a product lacking the original restriction site. Based on this property, a cloning strategy called ‘Golden Gate’ cloning was devised that allows to obtain in one tube and one step close to one hundred percent correct recombinant plasmids after just a 5 minute restriction-ligation. This method is therefore as efficient as currently used recombination-based cloning technologies but yields recombinant plasmids that do not contain unwanted sequences in the final construct, thus providing precision for this fundamental process of genetic manipulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae

              Here we determine the complete genomic sequence of the Gram negative, γ-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the γ-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host ‘addiction’ genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen. Supplementary information The online version of this article (doi:10.1038/35020000) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                J Bacteriol
                J Bacteriol
                jb
                jb
                JB
                Journal of Bacteriology
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0021-9193
                1098-5530
                25 January 2021
                23 March 2021
                April 2021
                23 March 2021
                : 203
                : 8
                : e00034-21
                Affiliations
                [a ]Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
                Princeton University
                Author notes
                Address correspondence to Melanie Blokesch, melanie.blokesch@ 123456epfl.ch .

                Citation Vesel N, Blokesch M. 2021. Pilus production in Acinetobacter baumannii is growth phase dependent and essential for natural transformation. J Bacteriol 203:e00034-21. https://doi.org/10.1128/JB.00034-21.

                Author information
                https://orcid.org/0000-0002-7024-1489
                Article
                00034-21
                10.1128/JB.00034-21
                8088505
                33495250
                2e734147-1132-446c-a45e-0ebd0e8578f2
                Copyright © 2021 Vesel and Blokesch.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 19 January 2021
                : 19 January 2021
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 85, Pages: 21, Words: 13300
                Funding
                Funded by: Swiss National Science Foundation, https://doi.org/10.13039/501100001711;
                Award ID: 407240_167061
                Award Recipient :
                Funded by: Howard Hughes Medical Institute (HHMI), https://doi.org/10.13039/100000011;
                Award ID: 55008726 (IRS)
                Award Recipient :
                Categories
                Research Article
                Spotlight
                Custom metadata
                April 2021

                Microbiology & Virology
                acinetobacter baumannii,natural competence for transformation,twitching motility,type iv pili

                Comments

                Comment on this article