16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural basis of signaling of cannabinoids receptors: paving a way for rational drug design in controling mutiple neurological and immune diseases

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cannabinoids (CBs), analgesic drugs used for thousands of years, were first found in Cannabis sativa, and the multiple CBs used medicinally, such as tetrahydrocannabinol (THC), cannabidiol (CBD) and dozens more, have complex structures. In addition to their production by plants, CBs are naturally present in the nerves and immune systems of humans and animals. Both exogenous and endogenous CBs carry out a variety of physiological functions by engaging with two CB receptors, the CB1 and CB2 receptors, in the human endocannabinoid system (ECS). Both CB1 and CB2 are G protein-coupled receptors that share a 7-transmembrane (7TM) topology. CB1, known as the central CB receptor, is mainly distributed in the brain, spinal cord, and peripheral nervous system. CB1 activation in the human body typically promotes the release of neurotransmitters, controls pain and memory learning, and regulates metabolism and the cardiovascular system. Clinically, CB1 is a direct drug target for drug addiction, neurodegenerative diseases, pain, epilepsy, and obesity. Unlike the exclusive expression of CB1 in the nervous system, CB2 is mainly distributed in peripheral immune cells. Selective CB2 agonists would have therapeutic potential in the treatment of inflammation and pain and avoid side effects caused by currently used clinical drugs. Although significant progress has been made in developing agonists toward CB receptors, efficient clinical drugs targeting CB receptors remain lacking due to their complex signaling mechanisms. The recent structural elucidation of CB receptors has greatly aided our understanding of the activation and signal transduction mechanisms of CB receptors. Structural characterization of CB receptors at the atomic level began in 2016, when Professor Zhi-jie Liu’s laboratory and Dr. Zhenhua Shao in the Rosenbuam laboratory solved the crystal structure of CB1. 1,2 This structural information greatly facilitated the understanding of CB1 ligand recognition and signal transduction mechanisms. Continuing this progress, Professor Zhi-jie Liu’s laboratory determined two agonist-bound CB1 crystal structures, which not only uncover the agonist-CB1 interactions within the orthosteric ligand-binding pocket but also disclose the different structural features of agonist-bound and antagonist-bound CB1. In 2019, Brian Kobilka’s group and Skiniotis’s group reported the cryo-electron microscopy structure of CB1 bound to an agonist, FUB, and downstream heterotrimeric Gi protein. The agonist, FUB, exhibited a high affinity for the orthostatic ligand-binding pocket of the CB1 receptor, maintaining the CB1 receptor in an active configuration to form a stable complex with nucleotide-free heterotrimeric Gi protein. The highly conserved orthosteric binding pocket of CB1 poses a great challenge for the rational drug design of potent CB1 agonists with high selectivity. Therefore, avoiding the orthosteric site and developing allosteric regulators of CB1 have become CB1 research hotspots. To address this issue, a collaborative effort by the teams of Dr. Shao Zhenhua and Dr. Rosenbuam resulted in solution of the crystal structure of CB1 in complex with an allosteric ligand. 3 In this structure, the allosteric modulator ORG27569 was identified at the outside of the 7TM bundle of the receptor, buried in the cell membrane. This new discovery undoubtedly provides a new route for drug development toward the CB1 receptor. Along with progress made in CB1 research, the study of another CB receptor, CB2, has also achieved great breakthroughs. In 2019, Professor Zhi-jie Liu’s laboratory solved the crystal structure of CB2 in complex with a rationally designed antagonist AM10257. This structure reveals the distinct antagonist-binding mode in CB2 and provides the molecular basis for the high-degree subtype selectivity of antagonists between CB1 and CB2. In January 2020, due to their combined efforts, the groups of Huaqiang Xu, Xiangquan Xie, and Cheng Zhang published the three-dimensional structure of CB2 bound to the agonist WIN 55212-2 and heterotrimeric Gi protein, 4 revealing the mechanisms by which the specific agonist WIN 55212-2 activates CB2 and CB2 interacts with the Gi protein. In the same issue of Cell, Zhi-jie Liu’s group reported a systematic study on the structures of both CB1 and CB2 engaged with G proteins, 5 and the crystal structure of agonist-bound CB2. By simultaneously solving the three-dimensional structures of the AM12033-CB2-Gi and AM841-CB1-Gi complexes, they revealed the structural basis for the activation of CB1 and CB2, as well as their coupling to downstream G proteins. CB1 and CB2 share 44% sequence homology and are simultaneously activated by many natural CB molecules. Consistently, recent structures of CB receptors have provided the structural basis for this phenomenon and shown that these two receptors share very similar ligand-binding pockets at orthosteric sites, generating great challenges in the design of selective agonists. However, structural identification of the allosteric ligand-binding sites in CB receptors provides new hope for the development of small compounds to selectively modulate CB receptor functions. These recent structural studies suggest that CB receptors adopt at least three states, an antagonistic state (inactive), intermediate state (active-like) and active state, which serves as the structural basis for complex signaling downstream of CB receptors (Fig. 1). Recent structural characterizations of CB receptors will greatly facilitate the design of new ligands to modulate the selective functions of CB receptors. Notably, the CBD was approved by the Food and Drug Administration (FDA) in 2018 to treat epilepsy. We now look forward to more drugs targeting these two CB receptors for clinical usage in the near future. Fig. 1 Structural understanding of Cannabinoid receptors. Recent structural studies have revealed that two cannabinoid receptors (CB1 and CB2) shared a conserved orthostatic binding pocket for their agonists. Notably, an extra allosteric binding pocket was found for CB1 receptor. Both endogenous molecule cholesterol or synthetic ligand ORG27569 was able to bind to allosteric pockets, thus regulate activation state of CB1. Collectively, crystallographic and Cryo-EM studies have identified at least three structural states for CB receptors, which are inactive, active-like (intermediate) and active, indicating complex mechanisms underlying CB receptors’ activation and signaling transduction.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal Structure of the Human Cannabinoid Receptor CB1.

          Cannabinoid receptor 1 (CB1) is the principal target of Δ(9)-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            High-resolution crystal structure of the human CB1 cannabinoid receptor

            The human cannabinoid G protein-coupled receptors (GPCRs) CB1 and CB2 mediate the functional responses to the endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG), as well as the widely consumed plant (phyto)cannabinoid Δ 9 -tetrahydrocannabinol (THC) 1 . The cannabinoid receptors have been the targets of intensive drug discovery efforts due to the therapeutic potential of modulators for controlling pain 2 , epilepsy 3 , obesity 4 , and other maladies. While much progress has recently been made in understanding the biophysical properties of GPCRs, investigations of the molecular mechanisms of the cannabinoids and their receptors have lacked high-resolution structural data. We used GPCR engineering and lipidic cubic phase (LCP) crystallization to determine the structure of the human CB1 receptor bound to the inhibitor taranabant at 2.6 Å resolution. CB1's extracellular surface, including the highly conserved membrane-proximal amino-terminal (N-terminal) region, is distinct from other lipid-activated GPCRs and forms a critical part of the ligand binding pocket. Docking studies further demonstrate how this same pocket may accommodate the cannabinoid agonist THC. Our CB1 structure provides an atomic framework for studying cannabinoid receptor function, and will aid the design and optimization of cannabinoid system modulators for therapeutic ends.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activation and Signaling Mechanism Revealed by Cannabinoid Receptor-Gi Complex Structures

              Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with G i , as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role. Structure and simulations of cannabinoid receptors CB2 and CB1 in their inactive, active-like, and activated signaling states reveal residue differences that may provide G protein selectivity, the distinct binding behavior of CB2 agonists in CB2 and CB1, as well as evidence for modulation of CB1 by cholesterol binding.
                Bookmark

                Author and article information

                Contributors
                sunjinpeng@sdu.edu.cn
                Journal
                Signal Transduct Target Ther
                Signal Transduct Target Ther
                Signal Transduction and Targeted Therapy
                Nature Publishing Group UK (London )
                2095-9907
                2059-3635
                21 July 2020
                21 July 2020
                2020
                : 5
                : 127
                Affiliations
                [1 ]GRID grid.27255.37, ISNI 0000 0004 1761 1174, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory Experimental Teratology of the Ministry of Education, Cheeloo college of Medicine, , Shandong University, ; 250012 Jinan, Shandong China
                [2 ]GRID grid.11135.37, ISNI 0000 0001 2256 9319, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, , Peking University, ; 100191 Beijing, China
                Article
                240
                10.1038/s41392-020-00240-5
                7374105
                32694501
                2e942c16-b15d-4a66-82d1-6191fed44c0e
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 May 2020
                : 24 June 2020
                Categories
                Research Highlight
                Custom metadata
                © The Author(s) 2020

                structural biology
                structural biology

                Comments

                Comment on this article