20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Immunogenicity and Immune Tolerance of Pluripotent Stem Cell Derivatives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all cell types in human body, and therefore hold great potential for cell therapy of currently incurable diseases including neural degenerative diseases, heart failure, and macular degeneration. This potential is further underscored by the promising safety and efficacy data from the ongoing clinical trials of hESC-based therapy of macular degeneration. However, one main challenge for the clinical application of hESC-based therapy is the allogeneic immune rejection of hESC-derived cells by the recipient. The breakthrough of the technology to generate autologous-induced pluripotent stem cells (iPSCs) by nuclear reprogramming of patient’s somatic cells raised the possibility that autologous iPSC-derived cells can be transplanted into the patients without the concern of immune rejection. However, accumulating data indicate that certain iPSC-derived cells can be immunogenic. In addition, the genomic instability associated with iPSCs raises additional safety concern to use iPSC-derived cells in human cell therapy. In this review, we will discuss the mechanism underlying the immunogenicity of the pluripotent stem cells and recent progress in developing immune tolerance strategies of human pluripotent stem cell (hPSC)-derived allografts. The successful development of safe and effective immune tolerance strategy will greatly facilitate the clinical development of hPSC-based cell therapy.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Reprogramming of human somatic cells to pluripotency with defined factors.

          Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies

            The Lancet, 385(9967), 509-516
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Embryonic stem cell trials for macular degeneration: a preliminary report.

              It has been 13 years since the discovery of human embryonic stem cells (hESCs). Our report provides the first description of hESC-derived cells transplanted into human patients. We started two prospective clinical studies to establish the safety and tolerability of subretinal transplantation of hESC-derived retinal pigment epithelium (RPE) in patients with Stargardt's macular dystrophy and dry age-related macular degeneration--the leading cause of blindness in the developed world. Preoperative and postoperative ophthalmic examinations included visual acuity, fluorescein angiography, optical coherence tomography, and visual field testing. These studies are registered with ClinicalTrials.gov, numbers NCT01345006 and NCT01344993. Controlled hESC differentiation resulted in greater than 99% pure RPE. The cells displayed typical RPE behaviour and integrated into the host RPE layer forming mature quiescent monolayers after transplantation in animals. The stage of differentiation substantially affected attachment and survival of the cells in vitro after clinical formulation. Lightly pigmented cells attached and spread in a substantially greater proportion (>90%) than more darkly pigmented cells after culture. After surgery, structural evidence confirmed cells had attached and continued to persist during our study. We did not identify signs of hyperproliferation, abnormal growth, or immune mediated transplant rejection in either patient during the first 4 months. Although there is little agreement between investigators on visual endpoints in patients with low vision, it is encouraging that during the observation period neither patient lost vision. Best corrected visual acuity improved from hand motions to 20/800 (and improved from 0 to 5 letters on the Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity chart) in the study eye of the patient with Stargardt's macular dystrophy, and vision also seemed to improve in the patient with dry age-related macular degeneration (from 21 ETDRS letters to 28). The hESC-derived RPE cells showed no signs of hyperproliferation, tumorigenicity, ectopic tissue formation, or apparent rejection after 4 months. The future therapeutic goal will be to treat patients earlier in the disease processes, potentially increasing the likelihood of photoreceptor and central visual rescue. Advanced Cell Technology. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                02 June 2017
                2017
                : 8
                : 645
                Affiliations
                [1] 1Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, China
                [2] 2Division of Biological Sciences, University of California, San Diego , La Jolla, CA, United States
                [3] 3The Eighth Affiliated Hospital of Sun Yat-sen University , Shenzhen, China
                Author notes

                Edited by: Reem Al-Daccak, Institut national de la santé et de la recherche médicale (INSERM), France

                Reviewed by: Ralf Dressel, Universitätsmedizin Göttingen, Germany; Federica Casiraghi, Istituto Di Ricerche Farmacologiche Mario Negri, Italy

                *Correspondence: Xuemei Fu, fxmzj2004@ 123456163.com ; Yang Xu, yangxu@ 123456ucsd.edu

                These authors have contributed equally to this work.

                Specialty section: This article was submitted to Alloimmunity and Transplantation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00645
                5454078
                28626459
                2ea2b7c6-d639-4545-b74c-2bdea90145af
                Copyright © 2017 Liu, Li, Fu and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 March 2017
                : 17 May 2017
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 64, Pages: 6, Words: 4932
                Categories
                Immunology
                Mini Review

                Immunology
                embryonic stem cells,induced pluripotent stem cells,cell therapy,allogeneic immune rejection,immunogenicity,immune tolerance

                Comments

                Comment on this article