1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electrical conductivity of nanorod-based transparent electrodes: Comparison of mean-field approaches

      Preprint

      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We mimic nanorod-based transparent electrodes as random resistor networks (RRN) produced by the homogeneous, isotropic, and random deposition of conductive zero-width sticks onto an insulating substrate. We suppose that the number density (the number of objects per unit area of the surface) of these sticks exceeds the percolation threshold, i.e., the system under consideration is a conductor. We computed the electrical conductivity of random resistor networks vs the number density of conductive fillers for the wire-resistance-dominated case, for the junction-resistance-dominated case, and for an intermediate case. We also offer a consistent continuous variant of the mean-field approach. The results of the RRN computations were compared with this mean-field approach. Our computations suggest that, for a qualitative description of the behavior of the electrical conductivity in relation to the number density of conductive wires, the mean-field approximation can be successfully applied when the number density of the fillers \(n > 2n_c\), where \(n_c\) is the percolation threshold. However, note the mean-field approach slightly overestimates the electrical conductivity. We demonstrate that this overestimate is caused by the junction potential distribution.

          Related collections

          Author and article information

          Journal
          09 October 2021
          Article
          2110.04455

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          10 pages, 9 figures, 52 references, extended and revised version of the invited talk presented during 34th Marian Smoluchowski Symposium on Statistical Physics http://www.smoluchowski.if.uj.edu.pl/
          cond-mat.dis-nn

          Theoretical physics

          Comments

          Comment on this article