6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High glucose levels affect retinal patterning during zebrafish embryogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maternal hyperglycaemia has a profound impact on the developing foetus and increases the risk of developing abnormalities like obesity, impaired glucose tolerance and insulin secretory defects in the post-natal life. Increased levels of glucose in the blood stream due to diabetes causes visual disorders like retinopathy. However, the impact of maternal hyperglycaemia due to pre-existing or gestational diabetes on the developing foetal retina is unknown. The aim of this work was to study the effect of hyperglycaemia on the developing retina using zebrafish as a vertebrate model. Wild-type and transgenic zebrafish embryos were exposed to 0, 4 and 5% D-Glucose in a pulsatile manner to mimic the fluctuations in glycaemia experienced by the developing foetus in pregnant women with diabetes. The zebrafish embryos displayed numerous ocular defects associated with altered retinal cell layer thickness, increased presence of macrophages, and decreased number of Müeller glial and retinal ganglion cells following high-glucose exposure. We have developed a model of gestational hyperglycaemia using the zebrafish embryo to study the effect of hyperglycaemia on the developing embryonic retina. The data suggests that glucose exposure is detrimental to the development of embryonic retina and the legacy of this exposure may extend into adulthood. These data suggest merit in retinal assessment in infants born to mothers with pre-existing and gestational diabetes both in early and adult life.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia.

          The role of intrauterine hyperglycemia and future risk of type 2 diabetes in human offspring is debated. We studied glucose tolerance in adult offspring of women with either gestational diabetes mellitus (GDM) or type 1 diabetes, taking the impact of both intrauterine hyperglycemia and genetic predisposition to type 2 diabetes into account. The glucose tolerance status following a 2-h 75-g oral glucose tolerance test (OGTT) was evaluated in 597 subjects, primarily Caucasians, aged 18-27 years. They were subdivided into four groups according to maternal glucose metabolism during pregnancy and genetic predisposition to type 2 diabetes: 1) offspring of women with diet-treated GDM (O-GDM), 2) offspring of genetically predisposed women with a normal OGTT (O-NoGDM), 3) offspring of women with type 1 diabetes (O-type 1), and 4) offspring of women from the background population (O-BP). The prevalence of type 2 diabetes and pre-diabetes (impaired glucose tolerance or impaired fasting glucose) in the four groups was 21, 12, 11, and 4%, respectively. In multiple logistic regression analysis, the adjusted odds ratios (ORs) for type 2 diabetes/pre-diabetes were 7.76 (95% CI 2.58-23.39) in O-GDM and 4.02 (1.31-12.33) in O-type 1 compared with O-BP. In O-type 1, the risk of type 2 diabetes/pre-diabetes was significantly associated with elevated maternal blood glucose in late pregnancy: OR 1.41 (1.04-1.91) per mmol/l. A hyperglycemic intrauterine environment appears to be involved in the pathogenesis of type 2 diabetes/pre-diabetes in adult offspring of primarily Caucasian women with either diet-treated GDM or type 1 diabetes during pregnancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type 2 diabetes across generations: from pathophysiology to prevention and management.

            Type 2 diabetes is now a pandemic and shows no signs of abatement. In this Seminar we review the pathophysiology of this disorder, with particular attention to epidemiology, genetics, epigenetics, and molecular cell biology. Evidence is emerging that a substantial part of diabetes susceptibility is acquired early in life, probably owing to fetal or neonatal programming via epigenetic phenomena. Maternal and early childhood health might, therefore, be crucial to the development of effective prevention strategies. Diabetes develops because of inadequate islet β-cell and adipose-tissue responses to chronic fuel excess, which results in so-called nutrient spillover, insulin resistance, and metabolic stress. The latter damages multiple organs. Insulin resistance, while forcing β cells to work harder, might also have an important defensive role against nutrient-related toxic effects in tissues such as the heart. Reversal of overnutrition, healing of the β cells, and lessening of adipose tissue defects should be treatment priorities. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The development of vision in the zebrafish (Danio rerio).

              We studied the development and maturation of the visual system by determining when zebrafish begin to see and to move their eyes. This information was correlated with the time courses of the development of the retina, the retinofugal projection, the retinal image, and the extraocular muscles, to obtain an integrated picture of early visual development. Two visual behaviors were monitored over 48-96 hr postfertilization (hpf). The startle response (body twitch) was evoked by an abrupt decrease in light intensity. The optokinetic response (tracking eye movements) was evoked by rotation of a striped drum. Visually evoked startle developed over 68-79 hpf, more than 20 hr after the onset of a touch-evoked startle. It was not seen in eyeless fish, excluding a role for nonretinal light senses. Tracking eye movements developed over 73-80 hpf. They were always in the direction of drum rotation, even when the fish had been light deprived from blastula stage, ruling out a "trial and error" period of learning to track the drum. The image formed by the ocular lens was examined in intact fish made transparent by suppressing the formation of melanin. The eye was initially far sighted and gradually improved, so that by 72 hpf the image plane coincided with the photoreceptor layer. The extraocular muscles assumed their adult configuration between 66 and 72 hpf. Thus, the retinal image and functional extraocular muscles appeared nearly simultaneously with the onset of tracking eye movements and probably represent the last events in the construction of this behavior.
                Bookmark

                Author and article information

                Contributors
                y.gibert@deakin.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                11 March 2019
                11 March 2019
                2019
                : 9
                : 4121
                Affiliations
                [1 ]ISNI 0000 0001 0526 7079, GRID grid.1021.2, Deakin University, School of Medicine, Faculty of Health, ; 75 Pigdons Road, Waurn Ponds, Geelong, VIC 3216 Australia
                [2 ]ISNI 0000 0004 0528 0478, GRID grid.484852.7, Monash University, Australian Regenerative Medicine Institute, ; 23 Innovation Walk, Clayton, VIC 3800 Australia
                [3 ]Brazilian Biosciences National Laboratory, Brazilian Centre for Research in Energy and Materials, Campinas, Brazil
                Article
                41009
                10.1038/s41598-019-41009-3
                6411978
                30858575
                2f5f83e4-629d-47d7-8251-14f0d38d0180
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 May 2018
                : 12 February 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article