15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To test potential parallels between hippocampal and anterior thalamic function, rats with anterior thalamic lesions were trained on a series of biconditional learning tasks. The anterior thalamic lesions did not disrupt learning two biconditional associations in operant chambers where a specific auditory stimulus (tone or click) had a differential outcome depending on whether it was paired with a particular visual context (spot or checkered wall-paper) or a particular thermal context (warm or cool). Likewise, rats with anterior thalamic lesions successfully learnt a biconditional task when they were reinforced for digging in one of two distinct cups (containing either beads or shredded paper), depending on the particular appearance of the local context on which the cup was placed (one of two textured floors). In contrast, the same rats were severely impaired at learning the biconditional rule to select a specific cup when in a particular location within the test room. Place learning was then tested with a series of go/no-go discriminations. Rats with anterior thalamic nuclei lesions could learn to discriminate between two locations when they were approached from a constant direction. They could not, however, use this acquired location information to solve a subsequent spatial biconditional task where those same places dictated the correct choice of digging cup. Anterior thalamic lesions produced a selective, but severe, biconditional learning deficit when the task incorporated distal spatial cues. This deficit mirrors that seen in rats with hippocampal lesions, so extending potential interdependencies between the two sites.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Pattern separation in the dentate gyrus and CA3 of the hippocampus.

          Theoretical models have long pointed to the dentate gyrus as a possible source of neuronal pattern separation. In agreement with predictions from these models, we show that minimal changes in the shape of the environment in which rats are exploring can substantially alter correlated activity patterns among place-modulated granule cells in the dentate gyrus. When the environments are made more different, new cell populations are recruited in CA3 but not in the dentate gyrus. These results imply a dual mechanism for pattern separation in which signals from the entorhinal cortex can be decorrelated both by changes in coincidence patterns in the dentate gyrus and by recruitment of nonoverlapping cell assemblies in CA3.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The head direction signal: origins and sensory-motor integration.

            Navigation first requires accurate perception of one's spatial orientation within the environment, which consists of knowledge about location and directional heading. Cells within several limbic system areas of the mammalian brain discharge allocentrically as a function of the animal's directional heading, independent of the animal's location and ongoing behavior. These cells are referred to as head direction (HD) cells and are believed to encode the animal's perceived directional heading with respect to its environment. Although HD cells are found in several areas, the principal circuit for generating this signal originates in the dorsal tegmental nucleus and projects serially, with some reciprocal connections, to the lateral mammillary nucleus --> anterodorsal thalamus --> PoS, and terminates in the entorhinal cortex. HD cells receive multimodal information about landmarks and self-generated movements. Vestibular information appears critical for generating the directional signal, but motor/proprioceptive and landmark information are important for updating it.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              When is the hippocampus involved in recognition memory?

              The role of the hippocampus in recognition memory is controversial. Recognition memory judgments may be made using different types of information, including object familiarity, an object's spatial location, or when an object was encountered. Experiment 1 examined the role of the hippocampus in recognition memory tasks that required the animals to use these different types of mnemonic information. Rats with bilateral cytotoxic lesions in the hippocampus or perirhinal or prefrontal cortex were tested on a battery of spontaneous object recognition tasks requiring the animals to make recognition memory judgments using familiarity (novel object preference); object-place information (object-in-place memory), or recency information (temporal order memory). Experiment 2 examined whether, when using different types of recognition memory information, the hippocampus interacts with either the perirhinal or prefrontal cortex. Thus, groups of rats were prepared with a unilateral cytotoxic lesion in the hippocampus combined with a lesion in either the contralateral perirhinal or prefrontal cortex. Rats were then tested in a series of object recognition memory tasks. Experiment 1 revealed that the hippocampus was crucial for object location, object-in-place, and recency recognition memory, but not for the novel object preference task. Experiment 2 revealed that object-in-place and recency recognition memory performance depended on a functional interaction between the hippocampus and either the perirhinal or medial prefrontal cortices. Thus, the hippocampus plays a role in recognition memory when such memory involves remembering that a particular stimulus occurred in a particular place or when the memory contains a temporal or object recency component.
                Bookmark

                Author and article information

                Journal
                Eur J Neurosci
                Eur. J. Neurosci
                ejn
                The European Journal of Neuroscience
                BlackWell Publishing Ltd (Oxford, UK )
                0953-816X
                1460-9568
                January 2013
                11 November 2013
                : 39
                : 2
                : 241-256
                Affiliations
                [1 ]School of Psychology, Cardiff University 70 Park Place, Cardiff, CF10 3AT, Wales, UK
                Author notes
                Correspondence: Julie Dumont, as above, E-mail: dumontjr@ 123456cardiff.ac.uk
                Article
                10.1111/ejn.12409
                4278545
                24215178
                2fcc0d6c-20ac-4970-be26-a50d64c887f6
                © 2013 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 June 2013
                : 04 October 2013
                : 04 October 2013
                Categories
                Behavioral Neuroscience

                Neurosciences
                anterior thalamic nuclei,biconditional learning,configural learning,hippocampus,spatial discrimination

                Comments

                Comment on this article