12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Interplay Between Systemic Inflammatory Factors and MicroRNAs in Age-Related Macular Degeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We aimed to explore the expression of systemic inflammatory factors and selected intracellular miRNAs that regulate inflammatory signaling pathways potentially involved in age-related macular degeneration (AMD) pathogenesis. A total of 179 patients with wet AMD, 175 with dry AMD and 121 controls were enrolled in the study. Soluble inflammatory factors were analyzed in plasma samples using Luminex technology. Expression of selected miRNAs was analyzed in isolated nucleated peripheral blood cells (PBNCs) using real-time qPCR. Wet AMD was an independent factor associated with higher concentrations of IL-6 (β = +0.24, p = 0.0004), GM-CSF (β = +0.31, p < 0.001), IFN-γ (β = +0.58, p < 0.001), higher expression of miRNA-23a-3p (β = +0.60, p < 0.0001), miRNA-30b (β = +0.32, p < 0.0001), miRNA-191-5p (β = +0.28, p < 0.0001) and lower concentration of IL-1β (β = −0.25, p = 0.0003), IL-5 (β = −0.45, p < 0.001), IL-10 (β = −0.45, p < 0.001), IL-12 (β = −0.35, p < 0.001), lower expression of miRNA-16-5p (β = −0.31, p < 0.0001), miRNA-17-3p (β = −0.18, p = 0.01), miRNA-150-5p (β = −0.18, p = 0.01) and miRNA-155-5p (β = −0.47, p < 0.0001). Multivariate analysis revealed that dry AMD was an independent factor associated with higher concentration of GM-CSF (β = +0.34, p < 0.001), IL-6 (β = +0.13, p = 0.05), higher expression of miRNA-23a-3p (β = +0.60, p < 0.0001), miRNA-126-3p (β = +0.23, p = 0.0005), miRNA-126-5p (β = +0.16, p = 0.01), miRNA 146a (β = +0.14, p = 0.03), and mRNA191-5p (β = +0.15, p = 0.03) and lower concentrations of TNF-α (β = +0.24, p = 0.0004), IL-1β (β = −0.39, p < 0.001), IL-2 (β = −0.20, p = 0.003), IL-5 (β = −0.54, p < 0.001), IL-10 (β = −0.56, p < 0.001), IL-12 (β = −0.51, p < 0.001), lower expression of miRNA-16-5p (β = −0.23, p = 0.0004), miRNA-17-3p (β = −0.20, p = 0.003) and miRNA-17-5p (β = −0.19, p = 0.004). Negative correlations between visual acuity and WBC, lymphocyte count, TNF-α, IL-1 β, IL-2, IL-4, IL-6, IL-10 concentrations and miRNA-191-5p, as well as positive correlations between visual acuity and miRNA-126-3p, -126-5p, and -155-5p PBNCs expression were found in AMD patients. No such correlations were found in the control group. Our results may suggest the role of both intra- and extracellular mechanisms implicated in inflammatory response regulation in multifactorial AMD pathogenesis.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Colony-stimulating factors in inflammation and autoimmunity.

          Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles and effects of microRNA-mediated post-transcriptional gene regulation.

            MicroRNAs (miRNAs) are abundant regulatory RNAs involved in the regulation of many key biological processes. Recent advances in understanding the mechanism of RNA interference and miRNA-mediated mechanisms shed light on major principals of the formation of the regulatory complex and provide models to explain how these small regulatory RNA species interfere with gene expression and how they influence the translational status of the transcriptome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases.

              MicroRNAs (miRNAs) are newly discovered, small, noncoding ribonucleic acids (RNAs) that play critical roles in the regulation of host genome expression at the posttranscriptional level. During last 20 years, miRNAs have emerged as key regulators of various biological processes including immune cell lineage commitment, differentiation, maturation, and maintenance of immune homeostasis and normal function. Thus, it is not surprising that dysregulated miRNA expression patterns now have been documented in a broad range of diseases including cancer as well as inflammatory and autoimmune diseases. This rapidly emerging field has revolutionized our understanding of normal immunoregulation and breakdown of self-tolerance. This review focuses on the current understanding of miRNA biogenesis, the role of miRNAs in the regulation of innate and adaptive immunity, and the association of miRNAs with autoimmune diseases. We have discussed miRNA dysregulation and the potential role of miRNAs in systemic lupus erythematosus (SLE), rheumatoid arthritis, and multiple sclerosis. Given that most autoimmune diseases are female-predominant, we also have discussed sex hormone regulation of miRNAs in inflammatory responses, with an emphasis on estrogen, which now has been shown to regulate miRNAs in the immune system. The field of miRNA regulation of mammalian genes has tremendous potential. The identification of specific miRNA expression patterns in autoimmune diseases as well as a comprehensive understanding of the role of miRNA in disease pathogenesis offers promise of not only novel molecular diagnostic markers but also new gene therapy strategies for treating SLE and other inflammatory autoimmune diseases. Copyright © 2011 Mosby, Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                22 October 2019
                2019
                : 11
                : 286
                Affiliations
                [1] 1Department of General Pathology, Pomeranian Medical University , Szczecin, Poland
                [2] 2First Department of Ophthalmology, Pomeranian Medical University , Szczecin, Poland
                [3] 3Department of Biochemistry and Medical Chemistry, Pomeranian Medical University , Szczecin, Poland
                Author notes

                Edited by: Daniel Ortuño-Sahagún, University of Guadalajara, Mexico

                Reviewed by: Barbara Klein, Paracelsus Medical University, Austria; Shang-Hsun Yang, National Cheng Kung University, Taiwan

                *Correspondence: Anna Machalińska, annam@ 123456pum.edu.pl
                Article
                10.3389/fnagi.2019.00286
                6817913
                2fe87676-13b0-47b7-a95b-f02e66378366
                Copyright © 2019 Litwińska, Sobuś, Łuczkowska, Grabowicz, Mozolewska-Piotrowska, Safranow, Kawa, Machaliński and Machalińska.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 June 2019
                : 04 October 2019
                Page count
                Figures: 0, Tables: 5, Equations: 0, References: 81, Pages: 13, Words: 0
                Funding
                Funded by: Narodowe Centrum Nauki 10.13039/501100004281
                Funded by: Narodowe Centrum Badań i Rozwoju 10.13039/501100005632
                Categories
                Neuroscience
                Original Research

                Neurosciences
                macular degeneration,mirna,cytokines,interleukin,inflammation
                Neurosciences
                macular degeneration, mirna, cytokines, interleukin, inflammation

                Comments

                Comment on this article