8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up

      , , , , ,
      International Journal of Pharmaceutics
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nano based drug delivery systems: recent developments and future prospects

          Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier.

            In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. In particular, PLGA has been extensively studied for the development of devices for controlled delivery of small molecule drugs, proteins and other macromolecules in commercial use and in research. This manuscript describes the various fabrication techniques for these devices and the factors affecting their degradation and drug release.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodegradable polymeric nanoparticles based drug delivery systems.

              Biodegradable nanoparticles have been used frequently as drug delivery vehicles due to its grand bioavailability, better encapsulation, control release and less toxic properties. Various nanoparticulate systems, general synthesis and encapsulation process, control release and improvement of therapeutic value of nanoencapsulated drugs are covered in this review. We have highlighted the impact of nanoencapsulation of various disease related drugs on biodegradable nanoparticles such as PLGA, PLA, chitosan, gelatin, polycaprolactone and poly-alkyl-cyanoacrylates.
                Bookmark

                Author and article information

                Journal
                International Journal of Pharmaceutics
                International Journal of Pharmaceutics
                Elsevier BV
                03785173
                August 2021
                August 2021
                : 605
                : 120807
                Article
                10.1016/j.ijpharm.2021.120807
                34144133
                2febd307-d0e6-4bb4-b910-b72bdec7927d
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article