26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular ATP is a danger signal activating P2X7 receptor in a LPS mediated inflammation (ARDS/ALI)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute respiratory distress syndrome (ARDS) is a life-threating lung condition resulting from a direct and indirect injury to the lungs [ 1, 2]. Pathophysiologically it is characterized by an acute alveolar damage, an increased permeability of the microvascular-barrier, leading to protein-rich pulmonary edema and subsequent impairment of arterial oxygenation and respiratory failure [ 1]. This study examined the role of extracellular ATP in recruiting inflammatory cells to the lung after induction of acute lung injury with lipopolysaccharide (LPS). However, the precise mechanism is poorly understood. Our objective was to investigate the functional role of the P2X7 receptor in the pathogenesis of acute respiratory distress syndrome (ARDS/ acute lung injury (ALI)) in vitro and in vivo. We show that intratracheally applied LPS causes an acute accumulation of ATP in the BALF (bronchoalveolar lavage) and lungs of mice. Prophylactic and therapeutic inhibition of P2X7R signalling by a specific antagonist and knock-out experiments was able to ameliorate the inflammatory response demonstrated by reduced ATP-levels, number of neutrophils and concentration of pro-inflammatory cytokine levels in the BALF. Experiments with chimeric mice showed that P2X7R expression on immune cells was responsible for the observed effect. Consistently, the inflammatory response is diminished only by a cell-type specific knockdown of P2X7 receptor on non-stationary immune cells. Since the results of BALF from patients with acute ARDS or pneumonia simulated the in vivo data after LPS exposure, the P2X7 receptor may be a new therapeutic target for treatment in acute respiratory distress syndrome (ARDS/ALI).

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Nucleotide signalling during inflammation.

          Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Y signalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells.

            Extracellular ATP serves as a danger signal to alert the immune system of tissue damage by acting on P2X or P2Y receptors. Here we show that allergen challenge causes acute accumulation of ATP in the airways of asthmatic subjects and mice with experimentally induced asthma. All the cardinal features of asthma, including eosinophilic airway inflammation, Th2 cytokine production and bronchial hyper-reactivity, were abrogated when lung ATP levels were locally neutralized using apyrase or when mice were treated with broad-spectrum P2-receptor antagonists. In addition to these effects of ATP in established inflammation, Th2 sensitization to inhaled antigen was enhanced by endogenous or exogenous ATP. The adjuvant effects of ATP were due to the recruitment and activation of lung myeloid dendritic cells that induced Th2 responses in the mediastinal nodes. Together these data show that purinergic signaling has a key role in allergen-driven lung inflammation that is likely to be amenable to therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways.

              IL-17 is a recently discovered cytokine that can be released from activated human CD4+ T lymphocytes. This study assessed the proinflammatory effects of human (h) IL-17 in the airways. In vitro, hIL-17 increased the release of IL-8 in human bronchial epithelial and venous endothelial cells, in a time- and concentration-dependent fashion. This effect of hIL-17 was inhibited by cotreatment with an anti-hIL-17 Ab and was potentiated by hTNF-alpha. In addition, hIL-17 increased the expression of hIL-8 mRNA in bronchial epithelial cells. Conditioned medium from hIL-17-treated bronchial epithelial cells increased human neutrophil migration in vitro. This effect was blocked by an anti-hIL-8 Ab. In vivo, intratracheal instillation of hIL-17 selectively recruited neutrophils into rat airways. This recruitment of neutrophils into the airways was inhibited by an anti-hIL-17 Ab and accompanied by increased levels of rat macrophage inflammatory protein-2 (rMIP-2) in bronchoalveolar lavage (BAL) fluid. The BAL neutrophilia was also blocked by an anti-rMIP-2 Ab. The effect of hIL-17 on the release of hIL-8 and rMIP-2 was also inhibited by glucocorticoids, in vitro and in vivo, respectively. These data demonstrate that hIL-17 can specifically and selectively recruit neutrophils into the airways via the release of C-X-C chemokines from bronchial epithelial cells and suggest a novel mechanism linking the activation of T-lymphocytes to recruitment of neutrophils into the airways.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                17 July 2018
                17 July 2018
                : 9
                : 55
                : 30635-30648
                Affiliations
                1 University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
                2 Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
                3 Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
                Author notes
                Correspondence to: Marco Idzko, marco.idzko@ 123456uniklinik-freiburg.de
                [*]

                These authors contributed equally to this work

                Article
                25761
                10.18632/oncotarget.25761
                6078145
                30093975
                303afa83-e7a1-487a-bfc7-d92e42a492c8
                Copyright: © 2018 Cicko et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 February 2017
                : 19 June 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                acute respiratory distress syndrome,atp,kn62,p2x7,celltype specific p2x7ko
                Oncology & Radiotherapy
                acute respiratory distress syndrome, atp, kn62, p2x7, celltype specific p2x7ko

                Comments

                Comment on this article