11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional divergence of chloroplast Cpn60α subunits during Arabidopsis embryo development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chaperonins are a class of molecular chaperones that assist in the folding and assembly of a wide range of substrates. In plants, chloroplast chaperonins are composed of two different types of subunits, Cpn60α and Cpn60β, and duplication of Cpn60α and Cpn60β genes occurs in a high proportion of plants. However, the importance of multiple Cpn60α and Cpn60β genes in plants is poorly understood. In this study, we found that loss-of-function of CPNA2 ( AtCpn60α2), a gene encoding the minor Cpn60α subunit in Arabidopsis thaliana, resulted in arrested embryo development at the globular stage, whereas the other AtCpn60α gene encoding the dominant Cpn60α subunit, CPNA1 ( AtCpn60α1), mainly affected embryonic cotyledon development at the torpedo stage and thereafter. Further studies demonstrated that CPNA2 can form a functional chaperonin with CPNB2 (AtCpn60β2) and CPNB3 (AtCpn60β3), while the functional partners of CPNA1 are CPNB1 (AtCpn60β1) and CPNB2. We also revealed that the functional chaperonin containing CPNA2 could assist the folding of a specific substrate, KASI (β-ketoacyl-[acyl carrier protein] synthase I), and that the KASI protein level was remarkably reduced due to loss-of-function of CPNA2. Furthermore, the reduction in the KASI protein level was shown to be the possible cause for the arrest of cpna2 embryos. Our findings indicate that the two Cpn60α subunits in Arabidopsis play different roles during embryo development through forming distinct chaperonins with specific AtCpn60β to assist the folding of particular substrates, thus providing novel insights into functional divergence of Cpn60α subunits in plants.

          Author summary

          Chaperonins are large oligomeric complexes that are involved in the folding and assembly of numerous proteins in various species. In contrast to other types of chaperonins, chloroplast chaperonins are characterized by the hetero-oligomeric structure composed of two unique types of subunits, Cpn60α and Cpn60β, each of which is present in two or more paralogous forms in most of higher plants. However, the functional significance underlying the wide array of subunit types and complex oligomeric arrangement remains largely unknown. Here, we investigated the role of the minor Cpn60α subunit AtCpn60α2 in Arabidopsis embryo development, and found that AtCpn60α2 is important for the transition of globular embryos to heart-shaped embryos, whereas loss of the dominant Cpn60α subunit AtCpn60α1 affects embryonic cotyledon development. Further studies demonstrated that AtCpn60α2 could form functional chaperonins with AtCpn60β2 and AtCpn60β3 to specifically assist in folding of the substrate KASI, which is important for the formation of heart-shaped embryos. Our results suggest that duplication of Cpn60α genes in higher plants can increase the potential number of chloroplast chaperonin substrates and provide chloroplast chaperonins with more roles in plant growth and development, thus revealing the relationship between duplication and functional specialization of chaperonin genes.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Acyl-lipid metabolism.

          Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences.

            Isolation of unknown DNA sequences flanked by known sequences is an important task in molecular biology research. Thermal asymmetric interlaced PCR (TAIL-PCR) is an effective method for this purpose. However the success rate of the original TAIL-PCR needs to be increased, and it is more desirable to obtain target products with larger sizes. Here we present a substantially improved TAIL-PCR procedure with special primer design and optimized thermal conditions. This high-efficiency TAIL-PCR (hiTAIL-PCR) combines the advantages of the TAIL-cycling and suppression-PCR, thus it can block the amplification of nontarget products and suppress small target ones, but allow efficient amplification of large target sequences. Using this method, we isolated genomic flanking sequences of T-DNA insertions from transgenic rice lines. In our tests, the success rates of the reactions were higher than 90%, and in most cases the obtained major products had sizes of 1-3 kb.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria.

              Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2. GroEL2 is essential--presumably providing the housekeeping chaperone functions--while groEL1 is nonessential, contains the attB site for phage Bxb1 integration, and encodes a putative chaperone with unusual structural features. Inactivation of the Mycobacterium smegmatis groEL1 gene by phage Bxb1 integration allows normal planktonic growth but prevents the formation of mature biofilms. GroEL1 modulates synthesis of mycolates--long-chain fatty acid components of the mycobacterial cell wall--specifically during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis. Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: InvestigationRole: ValidationRole: Visualization
                Role: InvestigationRole: ValidationRole: Visualization
                Role: InvestigationRole: Visualization
                Role: InvestigationRole: Visualization
                Role: InvestigationRole: Validation
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                29 September 2017
                September 2017
                : 13
                : 9
                : e1007036
                Affiliations
                [001]State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
                John Innes Centre, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-7622-8904
                Article
                PGENETICS-D-17-01085
                10.1371/journal.pgen.1007036
                5636168
                28961247
                305509b4-9360-4c2d-9743-9da7e3f10993
                © 2017 Ke et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 May 2017
                : 20 September 2017
                Page count
                Figures: 8, Tables: 1, Pages: 27
                Funding
                Funded by: National Basic Research Program of China
                Award ID: 2012CB944801, 2013CB126903
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 31370348, 31670312
                Award Recipient :
                This work was supported by National Basic Research Program of China (2012CB944801, 2013CB126903) and by National Natural Science Foundation of China (31370348, 31670312). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Developmental Biology
                Embryology
                Embryos
                Research and Analysis Methods
                Experimental Organism Systems
                Model Organisms
                Arabidopsis Thaliana
                Research and Analysis Methods
                Model Organisms
                Arabidopsis Thaliana
                Biology and Life Sciences
                Organisms
                Eukaryota
                Plants
                Brassica
                Arabidopsis Thaliana
                Research and Analysis Methods
                Experimental Organism Systems
                Plant and Algal Models
                Arabidopsis Thaliana
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Chloroplasts
                Biology and Life Sciences
                Cell Biology
                Plant Cell Biology
                Chloroplasts
                Biology and Life Sciences
                Plant Science
                Plant Cell Biology
                Chloroplasts
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Plant Cells
                Chloroplasts
                Biology and Life Sciences
                Cell Biology
                Plant Cell Biology
                Plant Cells
                Chloroplasts
                Biology and Life Sciences
                Plant Science
                Plant Cell Biology
                Plant Cells
                Chloroplasts
                Biology and Life Sciences
                Developmental Biology
                Embryology
                Embryo Development
                Biology and Life Sciences
                Organisms
                Eukaryota
                Plants
                Seedlings
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Fruit and Seed Anatomy
                Plant Embryo Anatomy
                Cotyledons (Botany)
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Plant Embryo Anatomy
                Cotyledons (Botany)
                Biology and Life Sciences
                Developmental Biology
                Embryogenesis
                Plant Embryogenesis
                Plant Embryo Anatomy
                Cotyledons (Botany)
                Biology and Life Sciences
                Developmental Biology
                Plant Growth and Development
                Plant Development
                Plant Embryogenesis
                Plant Embryo Anatomy
                Cotyledons (Botany)
                Biology and Life Sciences
                Plant Science
                Plant Growth and Development
                Plant Development
                Plant Embryogenesis
                Plant Embryo Anatomy
                Cotyledons (Botany)
                Biology and Life Sciences
                Biotechnology
                Genetic Engineering
                Genetically Modified Organisms
                Genetically Modified Plants
                Biology and Life Sciences
                Biotechnology
                Plant Biotechnology
                Genetically Modified Plants
                Biology and Life Sciences
                Plant Science
                Plant Biotechnology
                Genetically Modified Plants
                Biology and Life Sciences
                Organisms
                Eukaryota
                Plants
                Genetically Modified Plants
                Biology and Life Sciences
                Genetics
                Phenotypes
                Custom metadata
                vor-update-to-uncorrected-proof
                2017-10-11
                All relevant data are within the paper and its Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article