55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid Insulin-Mediated Increase in Microvascular Glycocalyx Accessibility in Skeletal Muscle May Contribute to Insulin-Mediated Glucose Disposal in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been demonstrated that insulin-mediated recruitment of microvascular blood volume is associated with insulin sensitivity. We hypothesize that insulin rapidly stimulates penetration of red blood cells (RBC) and plasma into the glycocalyx and thereby promotes insulin-mediated glucose uptake by increasing intracapillary blood volume. Experiments were performed in rats; the role of the glycocalyx was assessed by enzymatic degradation using a bolus of hyaluronidase. First, the effect of insulin on glycocalyx accessibility was assessed by measuring the depth of penetration of RBCs into the glycocalyx in microvessels of the gastrocnemius muscle with Sidestream Dark-field imaging. Secondly, peripheral insulin sensitivity was determined using intravenous insulin tolerance tests (IVITT). In addition, in a smaller set of experiments, intravital microscopy of capillary hemodynamics in cremaster muscle and histological analysis of the distribution of fluorescently labeled 40 kDa dextrans (D40) in hindlimb muscle was used to evaluate insulin-mediated increases in capillary blood volume. Insulin increased glycocalyx penetration of RBCs by 0.34±0.44 µm (P<0.05) within 10 minutes, and this effect of insulin was greatly impaired in hyaluronidase treated rats. Further, hyaluronidase treated rats showed a 35±25% reduction in whole-body insulin-mediated glucose disposal compared to control rats. Insulin-mediated increases in capillary blood volume were reflected by a rapid increase in capillary tube hematocrit from 21.1±10.1% to 29.0±9.8% (P<0.05), and an increase in D40 intensity in individual capillaries of 134±138% compared to baseline at the end of the IVITT. These effects of insulin were virtually abolished in hyaluronidase treated animals. In conclusion, insulin rapidly increases glycocalyx accessibility for circulating blood in muscle, and this is associated with an increased blood volume in individual capillaries. Hyaluronidase treatment of the glycocalyx abolishes the effects of insulin on capillary blood volume and impairs insulin-mediated glucose disposal.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The endothelial glycocalyx: composition, functions, and visualization

          This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The microcirculation is the motor of sepsis

            Can Ince (2005)
            Regional tissue distress caused by microcirculatory dysfunction and mitochondrial depression underlies the condition in sepsis and shock where, despite correction of systemic oxygen delivery variables, regional hypoxia and oxygen extraction deficit persist. We have termed this condition microcirculatory and mitochondrial distress syndrome (MMDS). Orthogonal polarization spectral imaging allowed the first clinical observation of the microcirculation in human internal organs, and has identified the pivotal role of microcirculatory abnormalities in defining the severity of sepsis, a condition not revealed by systemic hemodynamic or oxygen-derived variables. Recently, sublingual sidestream dark-field (SDF) imaging has been introduced, allowing observation of the microcirculation in even greater detail. Microcirculatory recruitment is needed to ensure adequate microcirculatory perfusion and the oxygenation of tissue cells that follows. In sepsis, where inflammation-induced autoregulatory dysfunction persists and oxygen need is not matched by supply, the microcirculation can be recruited by reducing pathological shunting, promoting microcirculatory perfusion, supporting pump function, and controlling hemorheology and coagulation. Resuscitation following MMDS must include focused recruitment of hypoxic-shunted microcirculatory units and/or resuscitation of the mitochondria. A combination of agents is required for successful rescue of the microcirculation. Single compounds such as activated protein C, which acts on multiple pathways, can be expected to be beneficial in rescuing the microcirculation in sepsis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo.

              Insulin increases glucose disposal into muscle. In addition, in vivo insulin elicits distinct nitric oxide synthase-dependent vascular responses to increase total skeletal muscle blood flow and to recruit muscle capillaries (by relaxing resistance and terminal arterioles, respectively). In the current study, we compared the temporal sequence of vascular and metabolic responses to a 30-min physiological infusion of insulin (3 mU. min(-1). kg(-1), euglycemic clamp) or saline in rat skeletal muscle in vivo. We used contrast-enhanced ultrasound to continuously quantify microvascular volume. Insulin recruited microvasculature within 5-10 min (P < 0.05), and this preceded both activation of insulin-signaling pathways and increases in glucose disposal in muscle, as well as changes in total leg blood flow. Moreover, l-NAME (N(omega)-nitro-l-arginine-methyl ester), a specific inhibitor of nitric oxide synthase, blocked this early microvascular recruitment (P < 0.05) and at least partially inhibited early increases in muscle glucose uptake (P < 0.05). We conclude that insulin rapidly recruits skeletal muscle capillaries in vivo by a nitric oxide-dependent action, and the increase in capillary recruitment may contribute to the subsequent glucose uptake.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                31 January 2013
                : 8
                : 1
                : e55399
                Affiliations
                [1 ]Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
                [2 ]Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
                [3 ]Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
                Universidade Federal do Rio de Janeiro (UFRJ), Brazil
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BE HV JWGET. Performed the experiments: BE JEC. Analyzed the data: BE HLM HV JWGET. Contributed reagents/materials/analysis tools: JPMC JMAR. Wrote the paper: BE HV JWGET.

                Article
                PONE-D-12-19579
                10.1371/journal.pone.0055399
                3561231
                23383178
                30c0e48d-4823-42d5-8ead-2410b32b2440
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 July 2012
                : 24 December 2012
                Page count
                Pages: 11
                Funding
                The study was supported by the Dutch Diabetes Research Foundation (grant number 2006.00.027), the Netherlands Heart Foundation (grant number 2005T037) and the Center for Translational Molecular Medicine (Work package 01C-104-04-PREDICCT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Cardiovascular System
                Circulatory Physiology
                Endocrine System
                Endocrine Physiology
                Insulin
                Musculoskeletal System
                Muscle
                Muscle Functions
                Histology
                Model Organisms
                Animal Models
                Rat
                Medicine
                Anatomy and Physiology
                Endocrine System
                Endocrine Physiology
                Insulin
                Cardiovascular
                Cardiovascular Imaging
                Vascular Biology
                Endocrinology
                Diabetic Endocrinology
                Diabetes Mellitus Type 2
                Insulin
                Endocrine Physiology
                Insulin

                Uncategorized
                Uncategorized

                Comments

                Comment on this article