2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue-specific down-regulation of S-adenosyl-homocysteine via suppression of dAhcyL1/dAhcyL2 extends health span and life span in Drosophila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methionine generates the methyl donor SAM, which is converted via methylation to SAH, which accumulates during aging. Parkhitko et al. discovered significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy, CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span.

          Abstract

          Aging is a risk factor for many human pathologies and is characterized by extensive metabolic changes. Using targeted high-throughput metabolite profiling in Drosophila melanogaster at different ages, we demonstrate that methionine metabolism changes strikingly during aging. Methionine generates the methyl donor S-adenosyl-methionine (SAM), which is converted via methylation to S-adenosyl-homocysteine (SAH), which accumulates during aging. A targeted RNAi screen against methionine pathway components revealed significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy (S-adenosyl-L-homocysteine hydrolase [SAHH[) , CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Importantly, tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span . Furthermore, metabolomic analysis of dAhcyL1-deficient flies revealed its effect on age-dependent metabolic reprogramming and H3K4 methylation. Altogether, reprogramming of methionine metabolism in young flies and suppression of age-dependent SAH accumulation lead to increased life span. These studies highlight the role of noncanonical Ahcy enzymes as determinants of healthy aging and longevity.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found

          The Hallmarks of Aging

          Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.

            Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein.

              The Drosophila melanogaster gene chico encodes an insulin receptor substrate that functions in an insulin/insulin-like growth factor (IGF) signaling pathway. In the nematode Caenorhabditis elegans, insulin/IGF signaling regulates adult longevity. We found that mutation of chico extends fruit fly median life-span by up to 48% in homozygotes and 36% in heterozygotes. Extension of life-span was not a result of impaired oogenesis in chico females, nor was it consistently correlated with increased stress resistance. The dwarf phenotype of chico homozygotes was also unnecessary for extension of life-span. The role of insulin/IGF signaling in regulating animal aging is therefore evolutionarily conserved.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                genesdev
                genesdev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                15 June 2016
                : 30
                : 12
                : 1409-1422
                Affiliations
                [1 ]Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA;
                [2 ]Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA;
                [3 ]MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University, Beijing 100084, China;
                [4 ]Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA;
                [5 ]Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA;
                [6 ]Department of Developmental Neurobiology, Division of Developmental Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
                Author notes
                Article
                8711660
                10.1101/gad.282277.116
                4926864
                27313316
                30c2a2eb-2227-4abc-85c8-dcf1bec3b799
                © 2016 Parkhitko et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 5 April 2016
                : 17 May 2016
                Page count
                Pages: 14
                Funding
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: R01-GM084947
                Funded by: LAM Foundation http://dx.doi.org/10.13039/100005963
                Award ID: LAM00105E01-15
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: 5P01CA120964-04
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: P30CA006516-46
                Funded by: Ellison Medical Foundation http://dx.doi.org/10.13039/100000863
                Funded by: American Federation for Aging Research http://dx.doi.org/10.13039/100000965
                Funded by: Glenn Foundation http://dx.doi.org/10.13039/100001642
                Categories
                Research Paper

                cg9977/ahcyl1,cg8956/ahcy89e/ahcyl2,methionine restriction,aging,life span,s-adenosyl-homocysteine (sah)

                Comments

                Comment on this article