75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lower Richness of Small Wild Mammal Species and Chagas Disease Risk

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11–89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease.

          Author Summary

          The classical methodology of mapping works with discrete units and sharp boundaries does not consider gradient transition areas. Spatial analysis by the interpolation method, followed by map algebra, is able to model the spatial distribution of biological phenomena and their distribution and eventual association with other parameters or variables, with a focus on enhancing the decision power of responsible authorities. Acute Chagas Disease outbreaks are increasing in the Amazon Basin as result of oral transmission. This scenario requires a new approach to identify hotspot transmission areas and implement control measures. We applied a geospatial approach using interpolation and map algebra methods to evaluate mammalian fauna variables related to these outbreaks. We constructed maps with mammalian fauna variables including the infection rates by Trypanosoma cruzi, in dogs and small wild mammals. The results obtained by visual examination of the maps were validated by statistical analysis. We observed that high prevalence of T. cruzi infection in dogs and small wild mammals was associated with mammal lower richness. Monitoring of T. cruzi infection in dogs may be a valuable tool for detecting the fauna lower richness of small wild mammals and elucidating the transmission cycle of T. cruzi in the wild.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of environmental change on emerging parasitic diseases.

          Ecological disturbances exert an influence on the emergence and proliferation of malaria and zoonotic parasitic diseases, including, Leishmaniasis, cryptosporidiosis, giardiasis, trypanosomiasis, schistosomiasis, filariasis, onchocerciasis, and loiasis. Each environmental change, whether occurring as a natural phenomenon or through human intervention, changes the ecological balance and context within which disease hosts or vectors and parasites breed, develop, and transmit disease. Each species occupies a particular ecological niche and vector species sub-populations are distinct behaviourally and genetically as they adapt to man-made environments. Most zoonotic parasites display three distinct life cycles: sylvatic, zoonotic, and anthroponotic. In adapting to changed environmental conditions, including reduced non-human population and increased human population, some vectors display conversion from a primarily zoophyllic to primarily anthrophyllic orientation. Deforestation and ensuing changes in landuse, human settlement, commercial development, road construction, water control systems (dams, canals, irrigation systems, reservoirs), and climate, singly, and in combination have been accompanied by global increases in morbidity and mortality from emergent parasitic disease. The replacement of forests with crop farming, ranching, and raising small animals can create supportive habitats for parasites and their host vectors. When the land use of deforested areas changes, the pattern of human settlement is altered and habitat fragmentation may provide opportunities for exchange and transmission of parasites to the heretofore uninfected humans. Construction of water control projects can lead to shifts in such vector populations as snails and mosquitoes and their parasites. Construction of roads in previously inaccessible forested areas can lead to erosion, and stagnant ponds by blocking the flow of streams when the water rises during the rainy season. The combined effects of environmentally detrimental changes in local land use and alterations in global climate disrupt the natural ecosystem and can increase the risk of transmission of parasitic diseases to the human population.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fluorescent antibody test for the serodiagnosis of American trypanosomiasis. Technical modification employing preserved culture forms of Trypanosoma cruzi in a slide test.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina.

              The reservoir capacity of domestic cats and dogs for Trypanosoma cruzi infection and the host-feeding patterns of domestic Triatoma infestans were assessed longitudinally in 2 infested rural villages in north-western Argentina. A total of 86 dogs and 38 cats was repeatedly examined for T. cruzi infection by serology and/or xenodiagnosis. The composite prevalence of infection in dogs (60%), but not in cats, increased significantly with age and with the domiciliary density of infected T. infestans. Dogs and cats had similarly high forces of infection, prevalence of infectious hosts (41-42%), and infectiousness to bugs at a wide range of infected bug densities. The infectiousness to bugs of seropositive dogs declined significantly with increasing dog age and was highly aggregated. Individual dog infectiousness to bugs was significantly autocorrelated over time. Domestic T. infestans fed on dogs showed higher infection prevalence (49%) than those fed on cats (39%), humans (38%) or chickens (29%) among 1085 bugs examined. The basic reproduction number of T. cruzi in dogs was at least 8.2. Both cats and dogs are epidemiologically important sources of infection for bugs and householders, dogs nearly 3 times more than cats.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                May 2012
                15 May 2012
                : 6
                : 5
                : e1647
                Affiliations
                [1 ]Laboratory of Tripanosomatid Biology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
                [2 ]Laboratory of Quantitative Methods, National School of Public Health Sérgio Arouca, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
                [3 ]Laboratory of Cartography, Military Institute of Engineering, Rio de Janeiro, Brazil
                Universidad Autónoma de Yucatán, Mexico
                Author notes

                Conceived and designed the experiments: SCCX LFCFS AMJ. Performed the experiments: SCCX VSL KJLM. Analyzed the data: SCCX ALRR VSL JCRO LFCFS AMJ. Contributed reagents/materials/analysis tools: LFCFS AMJ. Wrote the paper: SCCX ALRR AMJ. Participated in data collection: ALRR AMJ SCCX.

                Article
                PNTD-D-11-00794
                10.1371/journal.pntd.0001647
                3352825
                22616021
                31cce03e-a1e1-4765-affa-17a58d0981d1
                Xavier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 August 2011
                : 3 April 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Ecology
                Bioindicators
                Mathematics
                Algebra
                Medicine
                Infectious Diseases
                Neglected Tropical Diseases
                Chagas Disease

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article