23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amino Acids As Mediators of Metabolic Cross Talk between Host and Pathogen

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The interaction between host and pathogen decidedly shapes the outcome of an infection, thus understanding this interaction is critical to the treatment of a pathogen-induced infection. Although research in this area of cell biology has yielded surprising findings regarding interactions between host and pathogen, understanding of the metabolic cross talk between host and pathogen is limited. At the site of infection, host and pathogen share similar or identical nutritional substrates and generate common metabolic products, thus metabolic cross talk between host and pathogen could profoundly affect the pathogenesis of an infection. In this review, we present results of a recent discovery of a metabolic interaction between host and pathogen from an amino acid (AA) metabolism-centric point of view. The host depends on AA metabolism to support defensive responses against pathogens, while the pathogens modulate AA metabolism for its own advantage. Some AA, such as arginine, asparagine, and tryptophan, are central points of competition between the host and pathogen. Thus, a better understanding of AA-mediated metabolic cross talk between host and pathogen will provide insight into fruitful therapeutic approaches to manipulate and prevent progression of an infection.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Indoleamine 2,3 dioxygenase and metabolic control of immune responses.

          Sustained access to nutrients is a fundamental biological need, especially for proliferating cells, and controlling nutrient supply is an ancient strategy to regulate cellular responses to stimuli. By catabolizing the essential amino acid TRP, cells expressing the enzyme indoleamine 2,3 dioxygenase (IDO) can mediate potent local effects on innate and adaptive immune responses to inflammatory insults. Here, we discuss recent progress in elucidating how IDO activity promotes local metabolic changes that impact cellular and systemic responses to inflammatory and immunological signals. These recent developments identify potential new targets for therapy in a range of clinical settings, including cancer, chronic infections, autoimmune and allergic syndromes, and transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acids and immune function.

            A deficiency of dietary protein or amino acids has long been known to impair immune function and increase the susceptibility of animals and humans to infectious disease. However, only in the past 15 years have the underlying cellular and molecular mechanisms begun to unfold. Protein malnutrition reduces concentrations of most amino acids in plasma. Findings from recent studies indicate an important role for amino acids in immune responses by regulating: (1) the activation of T lymphocytes, B lymphocytes, natural killer cells and macrophages; (2) cellular redox state, gene expression and lymphocyte proliferation; and (3) the production of antibodies, cytokines and other cytotoxic substances. Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality. Arginine, glutamine and cysteine precursors are the best prototypes. Because of a negative impact of imbalance and antagonism among amino acids on nutrient intake and utilisation, care should be exercised in developing effective strategies of enteral or parenteral provision for maximum health benefits. Such measures should be based on knowledge about the biochemistry and physiology of amino acids, their roles in immune responses, nutritional and pathological states of individuals and expected treatment outcomes. New knowledge about the metabolism of amino acids in leucocytes is critical for the development of effective means to prevent and treat immunodeficient diseases. These nutrients hold great promise in improving health and preventing infectious diseases in animals and humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism.

              Although an immunoregulatory role of aryl hydrocarbon receptor (Ahr) has been demonstrated in T cells and macrophages, little is known about its function in dendritic cells (DC). Here, we show that lipopolysaccharide (LPS) and CpG stimulate Ahr expression in bone marrow-derived dendritic cells (BMDC). Furthermore, we found that Ahr is required to induce indoleamine 2,3-dioxygenase (IDO) expression, an immunosuppressive enzyme that catabolizes tryptophan into kynurenine (Kyn) and other metabolites in DC. In the presence of LPS or CpG, Ahr-deficient (Ahr(-/-)) mature BMDC induced immune responses characterized by reduced Kyn and IL-10 production compared with results observed with tolerogenic mature WT BMDC. In a coculture system with LPS- or CpG-stimulated BMDC and naive T cells, Ahr(-/-) BMDC inhibited naive T-cell differentiation into regulatory T (Treg) cells, which likely facilitated Th17 cell development and promoted naive T-cell proliferation. Addition of synthetic L-Kyn to the coculture system skewed the differentiation of naive T cells to Treg cells rather than Th17 cells. Taken together, our results demonstrate a previously unknown negatively regulatory role for Ahr in DC-mediated immunogenesis in the presence of LPS or CpG, which, in turn, alters the Kyn-dependent generation of Treg cells and Th17 cells from naive T cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                27 February 2018
                2018
                : 9
                : 319
                Affiliations
                [1] 1Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University , Guangzhou, China
                [2] 2Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University , Yangzhou, China
                [3] 3School of Medicine, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow , Glasgow, United Kingdom
                [4] 4Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences , Changsha, China
                [5] 5Department of Animal Science, Texas A&M University, TAMU , College Station, TX, United States
                [6] 6Chongqing Key Laboratory of Forage & Herbivorce, College of Animal Science and Technology, Southwest University , Chongqing, China
                [7] 7Changsha Medical University , Changsha, China
                Author notes

                Edited by: Yves Renaudineau, Université de Bretagne Occidentale, France

                Reviewed by: Ricardo Silvestre, Instituto de Pesquisa em Ciências da Vida e da Saúde (ICVS), Portugal; Miguel Prudêncio, Instituto de Medicina Molecular (IMM), Portugal

                *Correspondence: Guoqiang Zhu, yzgqzhu@ 123456yzu.edu.cn ; Jinping Deng, dengjinping@ 123456scau.edu.cn ; Yulong Yin, yinyulong@ 123456isa.ac.cn

                Specialty section: This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.00319
                5835074
                29535717
                31e5307c-7ca6-447e-bc0b-04ce7011cfa2
                Copyright © 2018 Ren, Rajendran, Zhao, Tan, Wu, Bazer, Zhu, Peng, Huang, Deng and Yin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 November 2017
                : 05 February 2018
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 119, Pages: 13, Words: 10768
                Categories
                Immunology
                Review

                Immunology
                amino acids,arginine,asparagine,metabolism,infection
                Immunology
                amino acids, arginine, asparagine, metabolism, infection

                Comments

                Comment on this article