70
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Selected barley miRNAs and their targets are regulated upon heat stress. Splicing of introns carrying miRNAs was induced by heat and correlated with the accumulation of mature miRNA.

          Abstract

          Heat stress is one of the major abiotic factors that can induce severe plant damage, leading to a decrease in crop plant productivity. Despite barley being a cereal of great economic importance, few data are available concerning its thermotolerance mechanisms. In this work microRNAs (miRNAs) involved in heat stress response in barley were investigated. The level of selected barley mature miRNAs was examined by hybridization. Quantitative real-time PCR (RT-qPCR) was used to monitor the changes in the expression profiles of primary miRNA (pri-miRNA) precursors, as well as novel and conserved target genes during heat stress. The miRNA-mediated cleavage sites in the target transcripts were confirmed by degradome analysis and the 5’ RACE (rapid amplification of cDNA ends) approach. Four barley miRNAs (miR160a, 166a, 167h, and 5175a) were found which are heat stress up-regulated at the level of both mature miRNAs and precursor pri-miRNAs. Moreover, the splicing of introns hosting miR160a and miR5175a is also heat induced. The results demonstrate transcriptional and post-transcriptional regulation of heat-responsive miRNAs in barley. The observed induction of miRNA expression is correlated with the down-regulation of the expression level of their experimentally identified new and conservative target genes.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Origin, biogenesis, and activity of plant microRNAs.

          MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic gene expression. Plants use highly conserved as well as more recently evolved, species-specific miRNAs to control a vast array of biological processes. This Review discusses current advances in our understanding of the origin, biogenesis, and mode of action of plant miRNAs and draws comparisons with their metazoan counterparts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            psRNATarget: a plant small RNA target analysis server

            Plant endogenous non-coding short small RNAs (20–24 nt), including microRNAs (miRNAs) and a subset of small interfering RNAs (ta-siRNAs), play important role in gene expression regulatory networks (GRNs). For example, many transcription factors and development-related genes have been reported as targets of these regulatory small RNAs. Although a number of miRNA target prediction algorithms and programs have been developed, most of them were designed for animal miRNAs which are significantly different from plant miRNAs in the target recognition process. These differences demand the development of separate plant miRNA (and ta-siRNA) target analysis tool(s). We present psRNATarget, a plant small RNA target analysis server, which features two important analysis functions: (i) reverse complementary matching between small RNA and target transcript using a proven scoring schema, and (ii) target-site accessibility evaluation by calculating unpaired energy (UPE) required to ‘open’ secondary structure around small RNA’s target site on mRNA. The psRNATarget incorporates recent discoveries in plant miRNA target recognition, e.g. it distinguishes translational and post-transcriptional inhibition, and it reports the number of small RNA/target site pairs that may affect small RNA binding activity to target transcript. The psRNATarget server is designed for high-throughput analysis of next-generation data with an efficient distributed computing back-end pipeline that runs on a Linux cluster. The server front-end integrates three simplified user-friendly interfaces to accept user-submitted or preloaded small RNAs and transcript sequences; and outputs a comprehensive list of small RNA/target pairs along with the online tools for batch downloading, key word searching and results sorting. The psRNATarget server is freely available at http://plantgrn.noble.org/psRNATarget/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA silencing in plants.

              There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                November 2014
                2 September 2014
                2 September 2014
                : 65
                : 20
                : 6123-6135
                Affiliations
                1Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89 , 61-614 Poznan, Poland
                2Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89 , 61-614 Poznan, Poland
                Author notes
                To whom correspondence should be addressed. E-mail: zofszwey@ 123456amu.edu.pl
                * These authors contributed equally to this work.
                Article
                10.1093/jxb/eru353
                4203144
                25183744
                3256558e-0166-4f01-91ba-62feaaa18e96
                © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 13
                Categories
                Research Paper

                Plant science & Botany
                barley,heat stress,microrna,pri-mirna,splicing,target gene.
                Plant science & Botany
                barley, heat stress, microrna, pri-mirna, splicing, target gene.

                Comments

                Comment on this article