14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure and assembly of scalable porous protein cages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proteins that self-assemble into regular shell-like polyhedra are useful, both in nature and in the laboratory, as molecular containers. Here we describe cryo-electron microscopy (EM) structures of two versatile encapsulation systems that exploit engineered electrostatic interactions for cargo loading. We show that increasing the number of negative charges on the lumenal surface of lumazine synthase, a protein that naturally assembles into a ∼1-MDa dodecahedron composed of 12 pentamers, induces stepwise expansion of the native protein shell, giving rise to thermostable ∼3-MDa and ∼6-MDa assemblies containing 180 and 360 subunits, respectively. Remarkably, these expanded particles assume unprecedented tetrahedrally and icosahedrally symmetric structures constructed entirely from pentameric units. Large keyhole-shaped pores in the shell, not present in the wild-type capsid, enable diffusion-limited encapsulation of complementarily charged guests. The structures of these supercharged assemblies demonstrate how programmed electrostatic effects can be effectively harnessed to tailor the architecture and properties of protein cages.

          Abstract

          Self-assembling proteins that form capsid-like structures act as molecular containers for diverse cargoes. Here, the authors solve the cryo-EM structures of lumazine synthase shells, and show that supercharged mutants form expanded assemblies, indicating that electrostatics can be exploited to engineer cage architecture.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Improved methods for building protein models in electron density maps and the location of errors in these models.

          Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description for the quality of the model. Strategies and tools are described that help to alleviate this problem. These simplify the model-building process, quantify the goodness of fit of the model on a per-residue basis and locate possible errors in peptide and side-chain conformations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accurate design of megadalton-scale two-component icosahedral protein complexes.

              Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.8 megadaltons) and dimensions (24 to 40 nanometers in diameter) comparable to those of small viral capsids. Electron microscopy, small-angle x-ray scattering, and x-ray crystallography show that 10 designs spanning three distinct icosahedral architectures form materials closely matching the design models. In vitro assembly of icosahedral complexes from independently purified components occurs rapidly, at rates comparable to those of viral capsids, and enables controlled packaging of molecular cargo through charge complementarity. The ability to design megadalton-scale materials with atomic-level accuracy and controllable assembly opens the door to a new generation of genetically programmable protein-based molecular machines.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                10 March 2017
                2017
                : 8
                : 14663
                Affiliations
                [1 ]Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich , Zürich 8093, Switzerland
                [2 ]Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich , Zürich 8093, Switzerland
                [3 ]Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , CH Utrecht 3584, The Netherlands
                Author notes
                Author information
                http://orcid.org/0000-0002-8202-4465
                Article
                ncomms14663
                10.1038/ncomms14663
                5354205
                28281548
                32b1592c-d143-4fa2-856d-11ceddee69f2
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 October 2016
                : 20 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article