22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subsampling effects in neuronal avalanche distributions recorded in vivo

      research-article
      1 , 2 , , 3 , 4
      BMC Neuroscience
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s), and sigma = 1, are hallmark features of self-organized critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma of the subsampled models with those of multielectrode local field potential (LFP) activity recorded in three macaque monkeys performing a short term memory task.

          Results

          Neither the LFP nor the subsampled SOC models showed a power law for f(s). Both, f(s) and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s) and sigma similar to those calculated from LFP activity.

          Conclusion

          Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s) and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s) and sigma calculated from the physiological recordings may be selected over alternatives.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Long-range temporal correlations and scaling behavior in human brain oscillations.

          The human brain spontaneously generates neural oscillations with a large variability in frequency, amplitude, duration, and recurrence. Little, however, is known about the long-term spatiotemporal structure of the complex patterns of ongoing activity. A central unresolved issue is whether fluctuations in oscillatory activity reflect a memory of the dynamics of the system for more than a few seconds. We investigated the temporal correlations of network oscillations in the normal human brain at time scales ranging from a few seconds to several minutes. Ongoing activity during eyes-open and eyes-closed conditions was recorded with simultaneous magnetoencephalography and electroencephalography. Here we show that amplitude fluctuations of 10 and 20 Hz oscillations are correlated over thousands of oscillation cycles. Our analyses also indicated that these amplitude fluctuations obey power-law scaling behavior. The scaling exponents were highly invariant across subjects. We propose that the large variability, the long-range correlations, and the power-law scaling behavior of spontaneous oscillations find a unifying explanation within the theory of self-organized criticality, which offers a general mechanism for the emergence of correlations and complex dynamics in stochastic multiunit systems. The demonstrated scaling laws pose novel quantitative constraints on computational models of network oscillations. We argue that critical-state dynamics of spontaneous oscillations may lend neural networks capable of quick reorganization during processing demands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The blue brain project.

            IBM's Blue Gene supercomputer allows a quantum leap in the level of detail at which the brain can be modelled. I argue that the time is right to begin assimilating the wealth of data that has been accumulated over the past century and start building biologically accurate models of the brain from first principles to aid our understanding of brain function and dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses.

              Evoked activity in the mammalian cortex and the resulting behavioral responses exhibit a large variability to repeated presentations of the same stimulus. This study examined whether the variability can be attributed to ongoing activity. Ongoing and evoked spatiotemporal activity patterns in the cat visual cortex were measured with real-time optical imaging; local field potentials and discharges of single neurons were recorded simultaneously, by electrophysiological techniques. The evoked activity appeared deterministic, and the variability resulted from the dynamics of ongoing activity, presumably reflecting the instantaneous state of cortical networks. In spite of the large variability, evoked responses in single trials could be predicted by linear summation of the deterministic response and the preceding ongoing activity. Ongoing activity must play an important role in cortical function and cannot be ignored in exploration of cognitive processes.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2009
                29 April 2009
                : 10
                : 40
                Affiliations
                [1 ]Department of Neurophysiology, Max Planck Institute for Brain Research, Deutschordenstrasse 46, D-60528 Frankfurt am Main, Germany
                [2 ]Group for Neural Theory, DEC, Ecole Normale Supérieure, Collège de France, 3, rue d'Ulm, 75005 Paris, France
                [3 ]Deptartment of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, D-72076 Tübingen, Germany
                [4 ]MEG Unit, Brain Imaging Centre, J.W. Goethe University, Heinrich Hoffmann Strasse 10, D-60528 Frankfurt am Main, Germany
                Article
                1471-2202-10-40
                10.1186/1471-2202-10-40
                2697147
                19400967
                32c38d9f-e5c4-4b7b-ad50-f2d00058e2ac
                Copyright © 2009 Priesemann et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 October 2008
                : 29 April 2009
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article