24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      C1q/TNF-related proteins, a family of novel adipokines, induce vascular relaxation through the adiponectin receptor-1/AMPK/eNOS/nitric oxide signaling pathway.

      Arteriosclerosis, Thrombosis, and Vascular Biology
      AMP-Activated Protein Kinases, antagonists & inhibitors, drug effects, metabolism, Adiponectin, pharmacology, Animals, Aorta, Endothelium, Vascular, cytology, Enzyme Inhibitors, Glycoproteins, Humans, Mice, Mice, Inbred C57BL, Mice, Knockout, Nitric Oxide, Nitric Oxide Synthase Type III, Phosphorylation, Proto-Oncogene Proteins c-akt, RNA, Small Interfering, Receptors, Adiponectin, Signal Transduction, physiology, Vasodilation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reduced plasma adiponectin (APN) in diabetic patients is associated with endothelial dysfunction. However, APN knockout animals manifest modest systemic dysfunction unless metabolically challenged. The protein family CTRPs (C1q/TNF-related proteins) has recently been identified as APN paralogs and some CTRP members share APN's metabolic regulatory function. However, the vasoactive properties of CTRPs remain completely unknown. The vasoactivity of currently identified murine CTRP members was assessed in aortic vascular rings and underlying molecular mechanisms was elucidated in human umbilical vein endothelial cells. Of 8 CTRPs, CTRPs 3, 5, and 9 caused significant vasorelaxation. The vasoactive potency of CTRP9 exceeded that of APN (3-fold) and is endothelium-dependent and nitric oxide (NO)-mediated. Mechanistically, CTRP9 increased AMPK/Akt/eNOS phosphorylation and increased NO production. AMPK knockdown completely blocked CTRP9-induced Akt/eNOS phosphorylation and NO production. Akt knockdown had no significant effect on CTRP9-induced AMPK phosphorylation, but blocked eNOS phosphorylation and NO production. Adiponectin receptor 1, but not receptor 2, knockdown blocked CTRP9-induced AMPK/Akt/eNOS phosphorylation and NO production. Finally, preincubating vascular rings with an AMPK-inhibitor abolished CTRP9-induced vasorelaxative effects. We have provided the first evidence that CTRP9 is a novel vasorelaxative adipocytokine that may exert vasculoprotective effects via the adiponectin receptor 1/AMPK/eNOS dependent/NO mediated signaling pathway.

          Related collections

          Author and article information

          Comments

          Comment on this article