2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Causal relationships between CD25 on immune cells and hip osteoarthritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Previous research has indicated a potential association between immune factors and osteoarthritis (OA), but the causal relationship between CD25 expression on immune cells and hip OA remains enigmatic. To shed light on this relationship, this study utilized the two-sample Mendelian Randomization (MR) method.

          Methods

          Leveraging genome-wide association studies (GWAS) data from the UK Biobank and arcOGEN, the investigation encompasses a substantial European cohort comprising 15,704 hip OA cases and 378,169 controls. Genetic insights into CD25 stem from a subgroup of 3,757 individuals with European ancestry, encompassing 77 CD25-related traits. Several MR methods were applied, and robustness was assessed through heterogeneity and sensitivity analysis.

          Results

          Among the 77 traits examined, 66 shared the same single nucleotide polymorphisms (SNPs) with hip OA. Of these, 7 CD25-related traits were found to be causally associated with hip OA (adjusted P><0.05), with F-statistics ranging from 33 to 122. These traits are specifically related to CD4 +CD25 + T cells, exhibiting odds ratios (OR) and 95% confidence intervals (CI) less than 1. Notably, no causal link was discerned with the CD8+CD25+ T cell subset. Within absolute count (AC) and relative count (RC) trait types, a significant causal relationship was observed solely between CD4 +CD25 + T cells and hip OA, without subtype localization. A more intricate examination of CD25 expression levels within the CD4 +CD25 + T cell subset revealed a correlation with the CD39+ regulatory T (Treg) subset and hip OA, particularly within the CD39 + activated Treg subset. Furthermore, a notable causal relationship emerged between CD25 expression levels in the CD45RA - not Treg subset and hip OA. However, no significant causal link was established with any subsets of B cells.

          Conclusion

          The genetic prediction suggests that CD25, particularly within the realm of CD4 +CD25 + T cells, may exert a protective influence against the development of hip OA. These findings provide a novel therapeutic approach for the prevention and treatment of hip OA.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

          Summary Background In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and development investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mendelian randomization: genetic anchors for causal inference in epidemiological studies

            Observational epidemiological studies are prone to confounding, reverse causation and various biases and have generated findings that have proved to be unreliable indicators of the causal effects of modifiable exposures on disease outcomes. Mendelian randomization (MR) is a method that utilizes genetic variants that are robustly associated with such modifiable exposures to generate more reliable evidence regarding which interventions should produce health benefits. The approach is being widely applied, and various ways to strengthen inference given the known potential limitations of MR are now available. Developments of MR, including two-sample MR, bidirectional MR, network MR, two-step MR, factorial MR and multiphenotype MR, are outlined in this review. The integration of genetic information into population-based epidemiological studies presents translational opportunities, which capitalize on the investment in genomic discovery research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Avoiding bias from weak instruments in Mendelian randomization studies.

              Mendelian randomization is used to test and estimate the magnitude of a causal effect of a phenotype on an outcome by using genetic variants as instrumental variables (IVs). Estimates of association from IV analysis are biased in the direction of the confounded, observational association between phenotype and outcome. The magnitude of the bias depends on the F-statistic for the strength of relationship between IVs and phenotype. We seek to develop guidelines for the design and analysis of Mendelian randomization studies to minimize bias. IV analysis was performed on simulated and real data to investigate the effect on bias of size of study, number and choice of instruments and method of analysis. Bias is shown to increase as the expected F-statistic decreases, and can be reduced by using parsimonious models of genetic association (i.e. not over-parameterized) and by adjusting for measured covariates. Using data from a single study, the causal estimate of a unit increase in log-transformed C-reactive protein on fibrinogen (μmol/l) is shown to increase from -0.005 (P = 0.99) to 0.792 (P = 0.00003) due to injudicious choice of instrument. Moreover, when the observed F-statistic is larger than expected in a particular study, the causal estimate is more biased towards the observational association and its standard error is smaller. This correlation between causal estimate and standard error introduces a second source of bias into meta-analysis of Mendelian randomization studies. Bias can be alleviated in meta-analyses by using individual level data and by pooling genetic effects across studies. Weak instrument bias is of practical importance for the design and analysis of Mendelian randomization studies. Post hoc choice of instruments, genetic models or data based on measured F-statistics can exacerbate bias. In particular, the commonly cited rule of thumb that F > 10 avoids bias in IV analysis is misleading.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                04 September 2023
                2023
                : 14
                : 1247710
                Affiliations
                [1] 1 Department of Orthopaedics, Xiangya Hospital, Central South University , Changsha, China
                [2] 2 National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University , Changsha, Hunan, China
                [3] 3 Department of Dermatology, Xiangya Hospital, Central South University , Changsha, China
                Author notes

                Edited by: Qi Wang, Huazhong University of Science and Technology, China

                Reviewed by: Bin Zhao, Second Xiangya Hospital, Central South University, China; Robert Cody Sharp, University of Florida, United States

                *Correspondence: Shushan Zhao, zhaoshuiquan@ 123456126.com

                †These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fimmu.2023.1247710
                10507251
                37731506
                33013a89-260d-45a0-a534-ad44e486ab5c
                Copyright © 2023 Luo, Zhu, Guo, Ruan, Liu, Fan and Zhao

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 June 2023
                : 21 August 2023
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 49, Pages: 9, Words: 4730
                Funding
                This work was supported by the following grants: the National Natural Science Foundation of China (No. 81902222,82172399), and the Central South University Graduate School-Enterprise Joint Innovation Project (NO. 2022XQLH186).
                Categories
                Immunology
                Original Research
                Custom metadata
                Autoimmune and Autoinflammatory Disorders : Autoimmune Disorders

                Immunology
                hip oa,cd25,snp,mendelian randomization,causal relationship
                Immunology
                hip oa, cd25, snp, mendelian randomization, causal relationship

                Comments

                Comment on this article