24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition

      review-article
      1 , 2 , * , 3
      Pharmaceuticals
      MDPI
      iron, neurodegeneration, NBIA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurodegeneration with brain iron accumulation (NBIA) is a set of neurodegenerative disorders, which includes very rare monogenetic diseases. They are heterogeneous in regard to the onset and the clinical symptoms, while the have in common a specific brain iron deposition in the region of the basal ganglia that can be visualized by radiological and histopathological examinations. Nowadays, 15 genes have been identified as causative for NBIA, of which only two code for iron-proteins, while all the other causative genes codify for proteins not involved in iron management. Thus, how iron participates to the pathogenetic mechanism of most NBIA remains unclear, essentially for the lack of experimental models that fully recapitulate the human phenotype. In this review we reported the recent data on new models of these disorders aimed at highlight the still scarce knowledge of the pathogenesis of iron deposition.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondria supply membranes for autophagosome biogenesis during starvation.

          Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes. Copyright (c) 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1.

            Cul4 E3 ubiquitin ligases contain the cullin 4 scaffold and the triple beta propeller Ddb1 adaptor protein, but few substrate receptors have been identified. Here, we identify 18 Ddb1- and Cul4-associated factors (DCAFs), including 14 containing WD40 repeats. DCAFs interact with multiple surfaces on Ddb1, and the interaction of WD40-containing DCAFs with Ddb1 requires a conserved "WDXR" motif. DCAF2/Cdt2, which is related to S. pombe Cdt2, functions in Xenopus egg extracts and human cells to destroy the replication licensing protein Cdt1 in S phase and after DNA damage. Depletion of human Cdt2 causes rereplication and checkpoint activation. In Xenopus, Cdt2 is recruited to replication forks via Cdt1 and PCNA, where Cdt1 ubiquitylation occurs. These studies uncover diverse substrate receptors for Cul4 and identify Cdt2 as a conserved component of the Cul4-Ddb1 E3 that is essential to destroy Cdt1 and ensure proper cell cycle regulation of DNA replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration.

              In higher eukaryotes, transfer RNAs (tRNAs) with the same anticodon are encoded by multiple nuclear genes, and little is known about how mutations in these genes affect translation and cellular homeostasis. Similarly, the surveillance systems that respond to such defects in higher eukaryotes are not clear. Here, we discover that loss of GTPBP2, a novel binding partner of the ribosome recycling protein Pelota, in mice with a mutation in a tRNA gene that is specifically expressed in the central nervous system causes ribosome stalling and widespread neurodegeneration. Our results not only define GTPBP2 as a ribosome rescue factor but also unmask the disease potential of mutations in nuclear-encoded tRNA genes. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                09 February 2019
                March 2019
                : 12
                : 1
                : 27
                Affiliations
                [1 ]School of Medicine, University Vita-Salute San Raffaele, 20132 Milano, Italy
                [2 ]San Raffaele Scientific Institute, Division of Neuroscience, 20132 Milano, Italy
                [3 ]Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milano, Italy; Valeria.Tiranti@ 123456istituto-besta.it
                Author notes
                [* ]Correspondence: levi.sonia@ 123456hsr.it ; Tel.: +39-0226434755
                Author information
                https://orcid.org/0000-0002-3584-7338
                Article
                pharmaceuticals-12-00027
                10.3390/ph12010027
                6469182
                30744104
                330b393e-e531-4282-a811-4fd9bd4204c7
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 December 2018
                : 29 January 2019
                Categories
                Review

                iron,neurodegeneration,nbia
                iron, neurodegeneration, nbia

                Comments

                Comment on this article