11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What role of the cGAS-STING pathway plays in chronic pain?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic pain interferes with daily functioning and is frequently accompanied by depression. Currently, traditional clinic treatments do not produce satisfactory analgesic effects and frequently result in various adverse effects. Pathogen recognition receptors (PRRs) serve as innate cellular sensors of danger signals, sense invading microorganisms, and initiate innate and adaptive immune responses. Among them, cGAS-STING alerts on the presence of both exogenous and endogenous DNA in the cytoplasm, and this pathway has been closely linked to multiple diseases, including auto-inflammation, virus infection, and cancer. An increasing numbers of evidence suggest that cGAS-STING pathway involves in the chronic pain process; however, its role remains controversial. In this narrative review, we summarize the recent findings on the involvement of the cGAS-STING pathway in chronic pain, as well as several possible mechanisms underlying its activation. As a new area of research, this review is unique in considering the cGAS-STING pathway in sensory neurons and glial cells as a part of a broader understanding of pain, including potential mechanisms of inflammation, immunity, apoptosis, and autophagy. It will provide new insight into the treatment of pain in the future.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          STING an Endoplasmic Reticulum Adaptor that Facilitates Innate Immune Signaling

          We report here the identification, following expression cloning, of a molecule, STING (STimulator of INterferon Genes) that regulates innate immune signaling processes. STING, comprising 5 putative transmembrane (TM) regions, predominantly resides in the endoplasmic reticulum (ER) and is able to activate both NF-κB and IRF3 transcription pathways to induce type I IFN and exert a potent anti-viral state following expression. In contrast, loss of STING rendered murine embryonic fibroblasts (STING −/−MEFs) extremely susceptible to negative-stranded virus infection, including vesicular stomatitis virus, VSV. Further, STING ablation abrogated the ability of intracellular B-form DNA, as well as members of the herpes virus family, to induce IFNβ, but did not significantly affect the Toll-like receptor (TLR pathway). Yeast-two hybrid and co-immunprecipitation studies indicated that STING interacts with RIG-I and with Ssr2/TRAPβ, a member of the translocon-associated protein (TRAP) complex required for protein translocation across the ER membrane following translation[1, 2]. RNAi ablation of TRAPβ and translocon adaptor Sec61β was subsequently found to inhibit STING’s ability to stimulate IFNβ. Thus, aside from identifying a novel regulator of innate immune signaling, this data implicates for the first time a potential role for the translocon in innate signaling pathways activated by select viruses as well as intracellular DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors.

            Spontaneous T cell responses against tumors occur frequently and have prognostic value in patients. The mechanism of innate immune sensing of immunogenic tumors leading to adaptive T cell responses remains undefined, although type I interferons (IFNs) are implicated in this process. We found that spontaneous CD8(+) T cell priming against tumors was defective in mice lacking stimulator of interferon genes complex (STING), but not other innate signaling pathways, suggesting involvement of a cytosolic DNA sensing pathway. In vitro, IFN-? production and dendritic cell activation were triggered by tumor-cell-derived DNA, via cyclic-GMP-AMP synthase (cGAS), STING, and interferon regulatory factor 3 (IRF3). In the tumor microenvironment in vivo, tumor cell DNA was detected within host antigen-presenting cells, which correlated with STING pathway activation and IFN-? production. Our results demonstrate that a major mechanism for innate immune sensing of cancer occurs via the host STING pathway, with major implications for cancer immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pain regulation by non-neuronal cells and inflammation

              Acute pain is protective and a cardinal feature of inflammation. Chronic pain after arthritis, nerve injury, cancer, and chemotherapy is associated with chronic neuroinflammation, a local inflammation in the peripheral or central nervous system. Accumulating evidence suggests that non-neuronal cells such as immune cells, glial cells, keratinocytes, cancer cells, and stem cells play active roles in the pathogenesis and resolution of pain. We review how non-neuronal cells interact with nociceptive neurons by secreting neuroactive signaling molecules that modulate pain. Recent studies also suggest that bacterial infections regulate pain through direct actions on sensory neurons, and specific receptors are present in nociceptors to detect danger signals from infections. We also discuss new therapeutic strategies to control neuroinflammation for the prevention and treatment of chronic pain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                01 August 2022
                2022
                : 15
                : 963206
                Affiliations
                [1] 1Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University , Shanghai, China
                [2] 2School of Medicine, Shanghai University , Shanghai, China
                Author notes

                Edited by: Xin Zhang, Duke University, United States

                Reviewed by: Xiaqing Ma, Medical School of Nantong University, China; Shunmei Lu, Wuxi People's Hospital Affiliated to Nanjing Medical University, China

                *Correspondence: Xingji You yoyo1976@ 123456shu.edu.cn

                This article was submitted to Pain Mechanisms and Modulators, a section of the journal Frontiers in Molecular Neuroscience

                †These authors have contributed equally to this work

                Article
                10.3389/fnmol.2022.963206
                9376357
                35979145
                336d7edf-175b-4a7d-9041-57de3f6ea18e
                Copyright © 2022 Wu, Li, Zhang, Wang and You.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 June 2022
                : 11 July 2022
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 85, Pages: 9, Words: 7336
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Categories
                Molecular Neuroscience
                Review

                Neurosciences
                cgas-sting pathway,chronic pain,inflammation,autophagy,immunity,apoptosis
                Neurosciences
                cgas-sting pathway, chronic pain, inflammation, autophagy, immunity, apoptosis

                Comments

                Comment on this article