10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exploring material magnetization led to countless fundamental discoveries and applications, culminating in the field of spintronics. Recently, research effort in this field focused on magnetic skyrmions – topologically robust chiral magnetization textures, capable of storing information and routing spin currents via the topological Hall effect. In this article, we propose an optical system emulating any 2D spin transport phenomena with unprecedented controllability, by employing three-wave mixing in 3D nonlinear photonic crystals. Precise photonic crystal engineering, as well as active all-optical control, enable the realization of effective magnetization textures beyond the limits of thermodynamic stability in current materials. As a proof-of-concept, we theoretically design skyrmionic nonlinear photonic crystals with arbitrary topologies and propose an optical system exhibiting the topological Hall effect. Our work paves the way towards quantum spintronics simulations and novel optoelectronic applications inspired by spintronics, for both classical and quantum optical information processing.

          Abstract

          Control of effective magnetization textures like skyrmions is limited by the thermodynamic stability in current materials. Here, the authors propose a 3D nonlinear photonic crystal to emulate 2D spin transport phenomena with excellent controllability.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Real-space observation of a two-dimensional skyrmion crystal.

            Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Electronic analog of the electro-optic modulator

                Bookmark

                Author and article information

                Contributors
                ady@eng.tau.ac.il
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                17 February 2021
                17 February 2021
                2021
                : 12
                : 1092
                Affiliations
                [1 ]GRID grid.12136.37, ISNI 0000 0004 1937 0546, School of Electrical Engineering, Fleischman Faculty of Engineering, , Tel Aviv University, ; Tel Aviv, Israel
                [2 ]GRID grid.6451.6, ISNI 0000000121102151, Andrew and Erna Viterbi department of Electrical Engineering, , Technion—Israel Institute of Technology, ; Haifa, Israel
                Author information
                http://orcid.org/0000-0002-4056-4455
                http://orcid.org/0000-0003-0167-3402
                Article
                21250
                10.1038/s41467-021-21250-z
                7889664
                33597504
                338c2f26-d9cd-483c-aa34-e4d3cadaf5b4
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 July 2020
                : 20 November 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003977, Israel Science Foundation (ISF);
                Award ID: 1415/17
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100003973, Israel Academy of Sciences and Humanities;
                Award ID: Adams Fellowship
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                nonlinear optics,spintronics
                Uncategorized
                nonlinear optics, spintronics

                Comments

                Comment on this article