0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Circ_0005033 is an oncogene in laryngeal squamous cell carcinoma and regulates cell progression and Cisplatin sensitivity via miR-107/IGF1R axis

      , ,
      Anti-Cancer Drugs
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway

          Background Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) plays key role in the progression of some human cancers. However, the role of NEAT1 in human laryngeal squamous cell cancer (LSCC) is still unknown. We therefore investigated the expression and function of NEAT1 in LSCC. Methods NEAT1 level in LSCC and adjacent non-neoplastic tissues were detected by qRT-PCR. NEAT1 was knockdown in LSCC cells and cell proliferation, apoptosis and cell cycle were examined. The growth of xenografts with NEAT1 knockdown LSCC cells was analyzed. Results NEAT1 level was significantly higher in LSCC than in corresponding adjacent non-neoplastic tissues, and patients with neck nodal metastasis or advanced clinical stage had higher NEAT1 expression. Moreover, siRNA mediated NEAT1 knockdown significantly inhibited the proliferation and induced apoptosis and cell cycle arrest at G1 phase in LSCC cells. The growth of LSCC xenografts was significantly suppressed by the injection of NEAT1 siRNA lentivirus. Furthermore, NEAT1 regulated CDK6 expression in LSCC cells which was mediated by miR-107. Conclusion NEAT1 plays an oncogenic role in the tumorigenesis of LSCC and may serve as a potential target for therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression

            Background Circular RNA (circRNA) represents a broad and diverse endogenous RNAs that can regulate gene expression in cancer. However, the regulation and function of bladder cancer (BC) circRNAs remain largely unknown. Methods Here we generated circRNA microarray data from three BC tissues and paired non-cancerous matched tissues, and detected circular RNA-cTFRC up-regulated and correlated with tumor grade and poor survival rate of BC patients. We subsequently performed functional analyses in cell lines and an animal model to support clinical findings. Mechanistically, we demonstrated that cTFRC could directly bind to miR-107 and relieve suppression for target TFRC expression. Results We detected circular RNA-cTFRC up-regulated and correlated with tumor grade and poor survival rate of BC patients. Knock down of cTFRC inhibited invasion and proliferation of BC cell lines in vitro and tumor growth in vivo. Furthermore, the expression of cTFRC correlated with TFRC and negatively correlated with miR-107 both in BC cell lines and BC clinical samples. In addition, up-regulation of cTFRC promoted TFRC expression and contributed to an epithelial to mesenchymal transition phenotype in BC cells. Finally, we found that cTFRC acts as a competing endogenous RNA (ceRNA) for miR-107 to regulate TFRC expression. Conclusions cTFRC may exert regulatory functions in BC and may be a potential marker of BC diagnosis or progression. Electronic supplementary material The online version of this article (10.1186/s12943-019-0951-0) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway

              Background Laryngeal squamous cell carcinoma (LSCC) is the second most common malignant tumor in head and neck. Autophagy and circular RNAs (circRNAs) play critical roles in cancer progression and chemoresistance. However, the function and mechanism of circRNA in autophagy regulation of LSCC remain unclear. Methods The autophagy-suppressive circRNA circPARD3 was identified via RNA sequencing of 107 LSCC tissues and paired adjacent normal mucosal (ANM) tissues and high-content screening. RT-PCR, Sanger sequencing, qPCR and fluorescence in situ hybridization were performed to detect circPARD3 expression and subcellular localization. Biological functions of circPARD3 were assessed by proliferation, migration, invasion, autophagic flux, and chemoresistance assays using in vitro and in vivo models. The mechanism of circPARD3 was investigated by RNA immunoprecipitation, RNA pulldown, luciferase reporter assays, western blotting and immunohistochemical staining. Results Autophagy was inhibited in LSCC, and circPARD3 was upregulated in the LSCC tissues (n = 100, p < 0.001). High circPARD3 level was associated with advanced T stages (p < 0.05), N stages (p = 0.001), clinical stages (p < 0.001), poor differentiation degree (p = 0.025), and poor prognosis (p = 0.002) of LSCC patients (n = 100). Functionally, circPARD3 inhibited autophagy and promoted LSCC cell proliferation, migration, invasion and chemoresistance. We further revealed that activation of the PRKCI-Akt-mTOR pathway through sponging miR-145-5p was the main mechanism of circPARD3 inhibited autophagy, promoting LSCC progression and chemoresistance. Conclusion Our study reveals that the novel autophagy-suppressive circPARD3 promotes LSCC progression and chemoresistance through the PRKCI-Akt-mTOR pathway, providing new insights into circRNA-mediated autophagy regulation and potential biomarker and target for LSCC treatment. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-01279-2.
                Bookmark

                Author and article information

                Journal
                Anti-Cancer Drugs
                Ovid Technologies (Wolters Kluwer Health)
                0959-4973
                2022
                November 29 2021
                March 2022
                : 33
                : 3
                : 245-256
                Article
                10.1097/CAD.0000000000001260
                34845162
                33b375fe-b8fb-4a72-9509-54ef02a40125
                © 2022
                History

                Comments

                Comment on this article