1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combining QTL-seq and linkage mapping to fine map a candidate gene in qCTS6 for cold tolerance at the seedling stage in rice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cold stress caused by low temperatures is an important factor restricting rice production. Identification of cold-tolerance genes that can stably express in cold environments is crucial for molecular rice breeding.

          Results

          In this study, we employed high-throughput quantitative trait locus sequencing (QTL-seq) analyses in a 460-individual F 2:3 mapping population to identify major QTL genomic regions governing cold tolerance at the seedling stage in rice. A novel major QTL ( qCTS6) controlling the survival rate (SR) under low-temperature conditions of 9°C/10 days was mapped on the 2.60-Mb interval on chromosome 6. Twenty-seven single-nucleotide polymorphism (SNP) markers were designed for the qCST6 region based on re-sequencing data, and local QTL mapping was conducted using traditional linkage analysis. Eventually, we mapped qCTS6 to a 96.6-kb region containing 13 annotated genes, of which seven predicted genes contained 13 non-synonymous SNP loci. Quantitative reverse transcription PCR analysis revealed that only Os06g0719500, an OsbZIP54 transcription factor, was strongly induced by cold stress. Haplotype analysis confirmed that +376 bp (T>A) in the OsbZIP54 coding region played a key role in regulating cold tolerance in rice.

          Conclusion

          We identified OsbZIP54 as a novel regulatory gene associated with rice cold-responsive traits, with its Dongfu-104 allele showing specific cold-induction expression serving as an important molecular variation for rice improvement. This result is expected to further exploration of the genetic mechanism of rice cold tolerance at the seedling stage and improve cold tolerance in rice varieties by marker-assisted selection.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12870-021-03076-5.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

            S Altschul (1997)
            The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Re-epithelialization and immune cell behaviour in an ex vivo human skin model

              A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
                Bookmark

                Author and article information

                Contributors
                zoudtneau@126.com
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                19 June 2021
                19 June 2021
                2021
                : 21
                : 278
                Affiliations
                GRID grid.412243.2, ISNI 0000 0004 1760 1136, Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, , Northeast Agricultural University, ; Harbin, 150030 China
                Article
                3076
                10.1186/s12870-021-03076-5
                8214256
                34147069
                34e90cd6-b6ea-4c1d-bf11-82cc7a93b5a8
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 February 2021
                : 27 May 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Plant science & Botany
                oryza sativa l.,cold tolerance,qtl-seq,linkage-mapping,seedling stage
                Plant science & Botany
                oryza sativa l., cold tolerance, qtl-seq, linkage-mapping, seedling stage

                Comments

                Comment on this article