10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Polyphenols as Therapeutic Intervention for Alzheimer’s Disease: A Mechanistic Insight

      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dietary polyphenols encompass a diverse range of secondary metabolites found in nature, such as fruits, vegetables, herbal teas, wine, and cocoa products, etc. Structurally, they are either derivatives or isomers of phenol acid, isoflavonoids and possess hidden health promoting characteristics, such as antioxidative, anti-aging, anti-cancerous and many more. The use of such polyphenols in combating the neuropathological war raging in this generation is currently a hotly debated topic. Lately, Alzheimer’s disease (AD) is emerging as the most common neuropathological disease, destroying the livelihoods of millions in one way or another. Any therapeutic intervention to curtail its advancement in the generation to come has been in vain to date. Using dietary polyphenols to construct the barricade around it is going to be an effective strategy, taking into account their hidden potential to counter multifactorial events taking place under such pathology. Besides their strong antioxidant properties, naturally occurring polyphenols are reported to have neuroprotective effects by modulating the Aβ biogenesis pathway in Alzheimer’s disease. Thus, in this review, I am focusing on unlocking the hidden secrets of dietary polyphenols and their mechanistic advantages to fight the war with AD and related pathology.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids as antioxidants.

          Flavonoids are phenolic substances isolated from a wide range of vascular plants, with over 8000 individual compounds known. They act in plants as antioxidants, antimicrobials, photoreceptors, visual attractors, feeding repellants, and for light screening. Many studies have suggested that flavonoids exhibit biological activities, including antiallergenic, antiviral, antiinflammatory, and vasodilating actions. However, most interest has been devoted to the antioxidant activity of flavonoids, which is due to their ability to reduce free radical formation and to scavenge free radicals. The capacity of flavonoids to act as antioxidants in vitro has been the subject of several studies in the past years, and important structure-activity relationships of the antioxidant activity have been established. The antioxidant efficacy of flavonoids in vivo is less documented, presumably because of the limited knowledge on their uptake in humans. Most ingested flavonoids are extensively degraded to various phenolic acids, some of which still possess a radical-scavenging ability. Both the absorbed flavonoids and their metabolites may display an in vivo antioxidant activity, which is evidenced experimentally by the increase of the plasma antioxidant status, the sparing effect on vitamin E of erythrocyte membranes and low-density lipoproteins, and the preservation of erythrocyte membrane polyunsaturated fatty acids. This review presents the current knowledge on structural aspects and in vitro antioxidant capacity of most common flavonoids as well as in vivo antioxidant activity and effects on endogenous antioxidants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidants, oxidative stress and the biology of ageing.

            Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species. Here we review evidence that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Superoxide radical and superoxide dismutases.

              O2- oxidizes the [4Fe-4S] clusters of dehydratases, such as aconitase, causing-inactivation and release of Fe(II), which may then reduce H2O2 to OH- +OH.. SODs inhibit such HO. production by scavengingO2-, but Cu, ZnSODs, by virtue of a nonspecific peroxidase activity, may peroxidize spin trapping agents and thus give the appearance of catalyzing OH. production from H2O2. There is a glycosylated, tetrameric Cu, ZnSOD in the extracellular space that binds to acidic glycosamino-glycans. It minimizes the reaction of O2- with NO. E. coli, and other gram negative microorganisms, contain a periplasmic Cu, ZnSOD that may serve to protect against extracellular O2-. Mn(III) complexes of multidentate macrocyclic nitrogenous ligands catalyze the dismutation of O2- and are being explored as potential pharmaceutical agents. SOD-null mutants have been prepared to reveal the biological effects of O2-. SodA, sodB E. coli exhibit dioxygen-dependent auxotrophies and enhanced mutagenesis, reflecting O2(-)-sensitive biosynthetic pathways and DNA damage. Yeast, lacking either Cu, ZnSOD or MnSOD, are oxygen intolerant, and the double mutant was hypermutable and defective in sporulation and exhibited requirements for methionine and lysine. A Cu, ZnSOD-null Drosophila exhibited a shortened lifespan.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                March 2022
                March 15 2022
                : 11
                : 3
                : 554
                Article
                10.3390/antiox11030554
                35326204
                35576dd1-04e0-4ab5-8af0-2cb9318796b4
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article