2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Safety of Bacteriophages in Treatment of Diseases Caused by Multidrug-Resistant Bacteria

      , ,
      Pharmaceuticals
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Given the urgency due to the rapid emergence of multidrug-resistant (MDR) bacteria, bacteriophages (phages), which are viruses that specifically target and kill bacteria, are rising as a potential alternative to antibiotics. In recent years, researchers have begun to elucidate the safety aspects of phage therapy with the aim of ensuring safe and effective clinical applications. While phage therapy has generally been demonstrated to be safe and tolerable among animals and humans, the current research on phage safety monitoring lacks sufficient and consistent data. This emphasizes the critical need for a standardized phage safety assessment to ensure a more reliable evaluation of its safety profile. Therefore, this review aims to bridge the knowledge gap concerning phage safety for treating MDR bacterial infections by covering various aspects involving phage applications, including phage preparation, administration, and the implications for human health and the environment.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

          Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineered bacteriophages for treatment of a patient with a disseminated drug resistant Mycobacterium abscessus

            A 15-year-old cystic fibrosis patient with a disseminated Mycobacterium abscessus infection was treated with a three-phage cocktail following bilateral lung transplantation. Effective lytic phage derivatives that efficiently kill the infectious M. abscessus strain were developed by genome engineering and forward genetics. Intravenous phage treatment was well tolerated and associated with objective clinical improvement including sternal wound closure, improved liver function, and substantial resolution of infected skin nodules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pros and cons of phage therapy.

              Many publications list advantages and disadvantages associated with phage therapy, which is the use of bacterial viruses to combat populations of nuisance or pathogenic bacteria. The goal of this commentary is to discuss many of those issues in a single location. In terms of "Pros," for example, phages can be bactericidal, can increase in number over the course of treatment, tend to only minimally disrupt normal flora, are equally effective against antibiotic-sensitive and antibiotic-resistant bacteria, often are easily discovered, seem to be capable of disrupting bacterial biofilms, and can have low inherent toxicities. In addition to these assets, we consider aspects of phage therapy that can contribute to its safety, economics, or convenience, but in ways that are perhaps less essential to the phage potential to combat bacteria. For example, autonomous phage transfer between animals during veterinary application could provide convenience or economic advantages by decreasing the need for repeated phage application, but is not necessarily crucial to therapeutic success. We also consider possible disadvantages to phage use as antibacterial agents. These "Cons," however, tend to be relatively minor.
                Bookmark

                Author and article information

                Journal
                PHARH2
                Pharmaceuticals
                Pharmaceuticals
                MDPI AG
                1424-8247
                October 2023
                September 24 2023
                : 16
                : 10
                : 1347
                Article
                10.3390/ph16101347
                35a91714-db3e-4b40-9cb1-5bc5fda4ffdb
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article