15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The coronavirus outbreak 2019, called COVID-19, which originated in Wuhan, negatively affected the lives of millions of people and many people died from this infection. To prevent the spread of the disease, which is still in effect, various restriction decisions have been taken all over the world. In addition, the number of COVID-19 tests has been increased to quarantine infected people. However, due to the problems encountered in the supply of RT-PCR tests and the ease of obtaining Computed Tomography and X-ray images, imaging-based methods have become very popular in the diagnosis of COVID-19. Therefore, studies using these images to classify COVID-19 have increased. This paper presents a classification method for computed tomography chest images in the COVID-19 Radiography Database using features extracted by popular Convolutional Neural Networks (CNN) models (AlexNet, ResNet18, ResNet50, Inceptionv3, Densenet201, Inceptionresnetv2, MobileNetv2, GoogleNet). The determination of hyperparameters of Machine Learning (ML) algorithms by Bayesian optimization, and ANN-based image segmentation are the two main contributions in this study. First of all, lung segmentation is performed automatically from the raw image with Artificial Neural Networks (ANNs). To ensure data diversity, data augmentation is applied to the COVID-19 classes, which are fewer than the other two classes. Then these images are applied as input to five different CNN models. The features extracted from each CNN model are given as input to four different ML algorithms, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naive Bayes (NB), and Decision Tree (DT) for classification. To achieve the most successful classification accuracy, the hyperparameters of each ML algorithm are determined using Bayesian optimization. With the classification made using these hyperparameters, the highest success is obtained as 96.29% with the DenseNet201 model and SVM algorithm. The Sensitivity, Precision, Specificity, MCC, and F1-Score metric values for this structure are 0.9642, 0.9642, 0.9812, 0.9641 and 0.9453, respectively. These results showed that ML methods with the most optimum hyperparameters can produce successful results.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Automated detection of COVID-19 cases using deep neural networks with X-ray images

          The novel coronavirus 2019 (COVID-2019), which first appeared in Wuhan city of China in December 2019, spread rapidly around the world and became a pandemic. It has caused a devastating effect on both daily lives, public health, and the global economy. It is critical to detect the positive cases as early as possible so as to prevent the further spread of this epidemic and to quickly treat affected patients. The need for auxiliary diagnostic tools has increased as there are no accurate automated toolkits available. Recent findings obtained using radiology imaging techniques suggest that such images contain salient information about the COVID-19 virus. Application of advanced artificial intelligence (AI) techniques coupled with radiological imaging can be helpful for the accurate detection of this disease, and can also be assistive to overcome the problem of a lack of specialized physicians in remote villages. In this study, a new model for automatic COVID-19 detection using raw chest X-ray images is presented. The proposed model is developed to provide accurate diagnostics for binary classification (COVID vs. No-Findings) and multi-class classification (COVID vs. No-Findings vs. Pneumonia). Our model produced a classification accuracy of 98.08% for binary classes and 87.02% for multi-class cases. The DarkNet model was used in our study as a classifier for the you only look once (YOLO) real time object detection system. We implemented 17 convolutional layers and introduced different filtering on each layer. Our model (available at (https://github.com/muhammedtalo/COVID-19)) can be employed to assist radiologists in validating their initial screening, and can also be employed via cloud to immediately screen patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks

            In this study, a dataset of X-ray images from patients with common bacterial pneumonia, confirmed Covid-19 disease, and normal incidents, was utilized for the automatic detection of the Coronavirus disease. The aim of the study is to evaluate the performance of state-of-the-art convolutional neural network architectures proposed over the recent years for medical image classification. Specifically, the procedure called Transfer Learning was adopted. With transfer learning, the detection of various abnormalities in small medical image datasets is an achievable target, often yielding remarkable results. The datasets utilized in this experiment are two. Firstly, a collection of 1427 X-ray images including 224 images with confirmed Covid-19 disease, 700 images with confirmed common bacterial pneumonia, and 504 images of normal conditions. Secondly, a dataset including 224 images with confirmed Covid-19 disease, 714 images with confirmed bacterial and viral pneumonia, and 504 images of normal conditions. The data was collected from the available X-ray images on public medical repositories. The results suggest that Deep Learning with X-ray imaging may extract significant biomarkers related to the Covid-19 disease, while the best accuracy, sensitivity, and specificity obtained is 96.78%, 98.66%, and 96.46% respectively. Since by now, all diagnostic tests show failure rates such as to raise concerns, the probability of incorporating X-rays into the diagnosis of the disease could be assessed by the medical community, based on the findings, while more research to evaluate the X-ray approach from different aspects may be conducted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CoroNet: A Deep Neural Network for Detection and Diagnosis of COVID-19 from Chest X-ray Images

              Highlights • Classification of Normal, Pneumonia-bacterial, Pneumonia-viral and Covid-19 chest x-ray images. • Presented a Deep Convolutional Neural Network Model based on Xception architecture. • Used a transfer learning method to initialize model by weight parameters learned on large-scale datasets. • Trained the model on a dataset prepared by collecting x-ray images from publically available databases. • Achieved an overall accuracy of 89.6% and precision and recall rate for Covid-19 cases are 93% and 98.2%. The results obtained by our proposed model are superior compared to other studies in the literature • Promising results indicate that this model can be very helpful to doctors around the world in their fight against Covid-19 Pandemic.
                Bookmark

                Author and article information

                Journal
                Comput Biol Med
                Comput Biol Med
                Computers in Biology and Medicine
                Elsevier Ltd.
                0010-4825
                1879-0534
                20 January 2022
                March 2022
                20 January 2022
                : 142
                : 105244
                Affiliations
                [a ]Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
                [b ]Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
                [c ]Electrical and Electronics Engineering, Necmettin Erbakan University, Konya, Turkey
                Author notes
                []Corresponding author.
                Article
                S0010-4825(22)00036-1 105244
                10.1016/j.compbiomed.2022.105244
                8770389
                35077936
                365244ee-a8c8-4adc-9e10-44a9511e48bf
                © 2022 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 11 October 2021
                : 17 January 2022
                : 17 January 2022
                Categories
                Article

                bayesian optimization,covid-19 pandemic,convolutional neural networks,machine learning

                Comments

                Comment on this article