Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Heat-Aggregated IgA Prepared from Patients with IgA Nephropathy Increases Calcium Mobilization and Superoxide Production of Human Neutrophils in vitro

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IgA nephropathy, characterized by predominant mesangial IgA deposition, is the commonest glomerulonephritis worldwide. It is envisaged that circulating IgA plays a primary role in the glomerular injury of IgA nephropathy. In this study, we examined the pathophysiologic effect of IgA and IgG isolated from IgA nephritic patients on the signal transduction and oxidative metabolism of human neutrophils. Heat-aggregated forms, monomers, and F(ab’)<sub>2</sub> fragments of IgA and IgG were prepared from sera of 11 IgA nephritic patients and 11 healthy controls. Signal transduction was studied by measuring calcium mobilization and oxidative metabolism by measuring superoxide production. Different forms of IgA and IgG from patients with IgA nephropathy did not induce a significant increase in calcium mobilization directly. Nonetheless, neutrophils preincubated with heat-aggregated IgA or IgG from IgA nephritic patients demonstrated a significant rise in calcium mobilization upon subsequent stimulation by a chemotactic peptide, FMet-Leu-Phe (FMLP). Heat-aggregated IgA or IgG pretreatment of neutrophils increased FMLP-induced calcium mobilization in a dose-dependent manner. Aggregated IgA or IgG prepared by heat aggregation from IgA nephritic patients induced a significantly greater superoxide production from neutrophils than immunoglobulins from healthy controls. Similarly, heat-aggregated IgA and IgG induced superoxide production in a dose-dependent manner. Our data suggest that heat-aggregated forms of IgA and IgG exert an upregulatory effect on signal transduction and oxidative metabolism in human neutrophils. These findings indirectly support the view that neutrophils could be activated in IgA nephropathy and may potentially be participating in the inflammatory process of glomerular and interstitial injury.

          Related collections

          Author and article information

          Journal
          NEF
          Nephron
          10.1159/issn.1660-8151
          Nephron
          S. Karger AG
          1660-8151
          2235-3186
          1993
          1993
          12 December 2008
          : 64
          : 1
          : 129-135
          Affiliations
          aDepartment of Medicine and bClinical Immunology Unit, The Chinese University of Hong Kong Shatin, Hong Kong
          Article
          187292 Nephron 1993;64:129–135
          10.1159/000187292
          8389007
          © 1993 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Pages: 7
          Categories
          Original Paper

          Comments

          Comment on this article