1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Good’s Syndrome: Time to Move on From Reviewing the Past

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For seven decades, the pathophysiology of Good’s syndrome (GS) has remained a mystery, with few attempts to solve it. Initially described as an association between hypogammaglobulinemia and thymoma, controversy exists whether this is a unique disease, or a subgroup of Common Variable Immune Deficiency (CVID). Recently, some distinguishing aspects of both syndromes have come to light reflecting fundamental differences in their underlying pathophysiology. GS and CVID differ in demographic features and immune phenotype. GS is found almost exclusively in adults and is characterized by a significantly reduced or absence of peripheral B cells. In CVID, which also occurs in children, most patients have normal or slightly reduced peripheral B cells, with a distinguishing feature of low memory B cells. Similarly, differences in T cell dysregulation and manifestations of hematologic cytopenias may further distinguish GS from CVID. Knowledge of the clinical phenotype of this rare adult immune deficiency stems from individual case reports, retrospective, and cross-sectional data on a few cohorts with a limited number of well characterized patients. The understanding of pathophysiology in GS is hampered by the incomplete and inconsistent reporting of clinical and laboratory data, with a limited knowledge of its natural history. In this mini review, we discuss current state of the art data and identify research gaps. In order to resolve controversies and fill in knowledge gaps, we propose a coordinated paradigm shift from incidence reporting to robust investigative studies, addressing mechanisms of disease. We hope this novel approach sets a clear direction to solve the current controversies.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Practice parameter for the diagnosis and management of primary immunodeficiency.

          The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms

            For a long time, viruses have been shown to modify the clinical picture of several autoimmune diseases, including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s syndrome (SS), herpetic stromal keratitis (HSK), celiac disease (CD), and multiple sclerosis (MS). Best examples of viral infections that have been proposed to modulate the induction and development of autoimmune diseases are the infections with enteric viruses such as Coxsackie B virus (CVB) and rotavirus, as well as influenza A viruses (IAV), and herpesviruses. Other viruses that have been studied in this context include, measles, mumps, and rubella. Epidemiological studies in humans and experimental studies in animal have shown that viral infections can induce or protect from autoimmunopathologies depending on several factors including genetic background, host-elicited immune responses, type of virus strain, viral load, and the onset time of infection. Still, data delineating the clear mechanistic interaction between the virus and the immune system to induce autoreactivity are scarce. Available data indicate that viral-induced autoimmunity can be activated through multiple mechanisms including molecular mimicry, epitope spreading, bystander activation, and immortalization of infected B cells. Contrarily, the protective effects can be achieved via regulatory immune responses which lead to the suppression of autoimmune phenomena. Therefore, a better understanding of the immune-related molecular processes in virus-induced autoimmunity is warranted. Here we provide an overview of the current understanding of viral-induced autoimmunity and the mechanisms that are associated with this phenomenon.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Morbidity and mortality in common variable immune deficiency over 4 decades.

              The demographics, immunologic parameters, medical complications, and mortality statistics from 473 subjects with common variable immune deficiency followed over 4 decades in New York were analyzed. Median immunoglobulin levels were IgG, 246 mg/dL; IgA, 8 mg/dL; and IgM, 21 mg/dL; 22.6% had an IgG less than 100 mg/dL. Males were diagnosed earlier (median age, 30 years) than females (median age, 33.5 years; P = .004). Ninety-four percent of patients had a history of infections; 68% also had noninfectious complications: hematologic or organ-specific autoimmunity, 28.6%; chronic lung disease, 28.5%; bronchiectasis, 11.2%; gastrointestinal inflammatory disease, 15.4%; malabsorption, 5.9%; granulomatous disease, 9.7%; liver diseases and hepatitis, 9.1%; lymphoma, 8.2%; or other cancers, 7.0%. Females had higher baseline serum IgM (P = .009) and were more likely to develop lymphoma (P = .04); 19.6% of patients died, a significantly shorter survival than age- and sex-matched population controls (P < .0001). Reduced survival was associated with age at diagnosis, lower baseline IgG, higher IgM, and fewer peripheral B cells. The risk of death was 11 times higher for patients with noninfectious complications (hazard ratio = 10.95; P < .0001). Mortality was associated with lymphoma, any form of hepatitis, functional or structural lung impairment, and gastrointestinal disease with or without malabsorption, but not with bronchiectasis, autoimmunity, other cancers, granulomatous disease, or previous splenectomy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                12 January 2022
                2021
                : 12
                : 815710
                Affiliations
                [1] 1 Department of Experimental Medicine, McGill University , Montreal, QC, Canada
                [2] 2 Department of Medicine, Divisions of Allergy and Clinical Immunology, and Pediatrics, McGill University , Montreal, QC, Canada
                [3] 3 Department of Medicine, Division of Allergy and Clinical Immunology, McGill University , Montreal, QC, Canada
                [4] 4 Division of Experimental Medicine, Research Institute of the McGill University Health Centre, McGill University , Montreal, QC, Canada
                Author notes

                Edited by: Paul J. Maglione, Boston University, United States

                Reviewed by: Javier Chinen, Baylor College of Medicine, United States; Silvia Sánchez-Ramón, Complutense University of Madrid, Spain

                *Correspondence: Christos M. Tsoukas, christos.tsoukas@ 123456mcgill.ca

                This article was submitted to Primary Immunodeficiencies, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.815710
                8790113
                35095915
                36b57caf-761e-413d-87b2-803066eef9a5
                Copyright © 2022 Kabir, Alizadehfar and Tsoukas

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 November 2021
                : 22 December 2021
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 49, Pages: 7, Words: 3369
                Funding
                Funded by: Fondation de l'Hôpital Général de Montréal , doi 10.13039/501100017657;
                Categories
                Immunology
                Mini Review

                Immunology
                good’s syndrome,cvid,immune deficiency,hypogammaglobulinemia,thymoma
                Immunology
                good’s syndrome, cvid, immune deficiency, hypogammaglobulinemia, thymoma

                Comments

                Comment on this article