3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-145-5p inhibits hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes by targeting ROCK1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is increasing evidence that microRNAs (miRs) play critical roles in the pathological and physiological processes associated with myocardial ischemia reperfusion (I/R). miR-145 has been extensively studied in the cardiovascular system; however, the role of miR-145 in myocardial I/R remains unclear. Therefore, the present study aimed to investigate the role and mechanism of miR-145-5p in myocardial I/R by establishing a hypoxia/reoxygenation (H/R) model using H9c2 cardiomyocytes. The expression of miR-145-5p was regulated by transfection and the potential target of miR-145-5p was identified. In addition, apoptosis of the cardiomyocytes was evaluated using flow cytometry and the detection of cleaved caspase-3 by western blotting. The results revealed that miR-145-5p expression was decreased while cell apoptosis and Rho-associated coiled-coil-containing kinase 1 (ROCK1) expression were increased in H/R-stimulated H9c2 cardiomyocytes. The upregulation of miR-145-5p reduced apoptosis and the expression of ROCK1 in H/R-stimulated H9c2 cardiomyocytes. Furthermore, the overexpression of ROCK1 significantly attenuated the miR-145-5p-induced reduction of apoptosis following H/R. In conclusion, the present study indicates that the overexpression of miR-145-5p inhibits H/R-induced cardiomyocyte apoptosis by targeting ROCK1.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs: genomics, biogenesis, mechanism, and function.

            MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Myocardial ischemia-reperfusion injury: a neglected therapeutic target.

              Acute myocardial infarction (MI) is a major cause of death and disability worldwide. In patients with MI, the treatment of choice for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PPCI). However, the process of reperfusion can itself induce cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. A number of new therapeutic strategies currently under investigation for preventing myocardial reperfusion injury have the potential to improve clinical outcomes in patients with acute MI treated with PPCI.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                August 2021
                25 May 2021
                25 May 2021
                : 22
                : 2
                : 796
                Affiliations
                [1 ]Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
                [2 ]Shandong Blood Center, Jinan, Shandong 250012, P.R. China
                Author notes
                Correspondence to: Dr Juan Zhang, Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Road, Jinan, Shandong 250033, P.R. China awwa6940@ 123456sina.com

                *Contributed equally

                Article
                ETM-0-0-10228
                10.3892/etm.2021.10228
                8170661
                34093752
                375c653b-3f68-491f-8332-62d482f2dda1
                Copyright: © Cheng et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 25 April 2020
                : 21 April 2021
                Funding
                Funding: The authors gratefully acknowledge research support provided by the Youth Foundation of the National Natural Science Foundation of China (grant no. 81600284) and Shandong Key Research and Development Project (grant no. 2016GSF201196).
                Categories
                Articles

                Medicine
                microrna-145-5p,rock1,hypoxia/reoxygenation,h9c2,cardiomyocyte apoptosis
                Medicine
                microrna-145-5p, rock1, hypoxia/reoxygenation, h9c2, cardiomyocyte apoptosis

                Comments

                Comment on this article