592
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of liver regeneration by growth factors and cytokines

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The capability of the liver to fully regenerate after injury is a unique phenomenon essential for the maintenance of its important functions in the control of metabolism and xenobiotic detoxification. The regeneration process is histologically well described, but the genes that orchestrate liver regeneration have been only partially characterized. Of particular interest are cytokines and growth factors, which control different phases of liver regeneration. Historically, their potential functions in this process were addressed by analyzing their expression in the regenerating liver of rodents. Some of the predicted roles were confirmed using functional studies, including systemic delivery of recombinant growth factors, neutralizing antibodies or siRNAs prior to liver injury or during liver regeneration. In particular, the availability of genetically modified mice and their use in liver regeneration studies has unraveled novel and often unexpected functions of growth factors, cytokines and their downstream signalling targets in liver regeneration. This review summarizes the results obtained by functional studies that have addressed the roles and mechanisms of action of growth factors and cytokines in liver regeneration after acute injury to this organ.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Liver regeneration.

          Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair.

            Hepatocyte growth factor/scatter factor c-met signaling pathway is of central importance during development as well as in tumorigenesis. Because homozygous null mice for either hgf/sf or c-met die in utero, we used Cre/loxP-mediated gene targeting to investigate the function of c-met specifically in the adult liver. Loss of c-met appeared not to be detrimental to hepatocyte function under physiological conditions. Nonetheless, the adaptive responses of the liver to injury were dramatically affected. Mice lacking c-met gene in hepatocytes were hypersensitive to Fas-induced apoptosis. When injected with a low dose of anti-Fas antibody, the majority of these mice died from massive apoptosis and hemorrhagic necrosis, whereas all wild-type mice survived with signs of minor injury. After a challenge with a single necrogenic dose of CCl4, c-met conditional knockout mice exhibited impaired recovery from centrolobular lesions rather than a deficit in hepatocyte proliferation. The delayed healing was associated with a persistent inflammatory reaction, over-production of osteopontin, early and prominent dystrophic calcification, and impaired hepatocyte scattering/migration into diseased areas. These studies provide direct genetic evidence in support of the critical role of c-met in efficient liver regeneration and suggest that disruption of c-met affects primarily hepatocyte survival and tissue remodeling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice.

              Liver regeneration stimulated by a loss of liver mass leads to hepatocyte and nonparenchymal cell proliferation and rapid restoration of liver parenchyma. Mice with targeted disruption of the interleukin-6 (IL-6) gene had impaired liver regeneration characterized by liver necrosis and failure. There was a blunted DNA synthetic response in hepatocytes of these mice but not in nonparenchymal liver cells. Furthermore, there were discrete G1 phase (prereplicative stage in the cell cycle) abnormalities including absence of STAT3 (signal transducer and activator of transcription protein 3) activation and depressed AP-1, Myc, and cyclin D1 expression. Treatment of IL-6-deficient mice with a single preoperative dose of IL-6 returned STAT3 binding, gene expression, and hepatocyte proliferation to near normal and prevented liver damage, establishing that IL-6 is a critical component of the regenerative response.
                Bookmark

                Author and article information

                Journal
                EMBO Mol Med
                EMBO Mol Med
                emmm
                EMBO Molecular Medicine
                WILEY-VCH Verlag (Weinheim )
                1757-4676
                1757-4684
                August 2010
                : 2
                : 8
                : 294-305
                Affiliations
                [1 ]simpleDepartment of Biology, Institute of Cell Biology ETH Zurich, Zurich, Switzerland
                Author notes
                * Corresponding author: Tel: +41 44 633 3941; Fax: +41 44 633 1174; E-mail: sabine.werner@ 123456cell.biol.ethz.ch
                [†]

                Friederike Böhm, Ulrike A. Köhler and Tobias Speicher contributed equally.

                Article
                10.1002/emmm.201000085
                3377328
                20652897
                37a5598f-ec59-4b64-99bf-1b114e0ea9ef
                Copyright © 2010 EMBO Molecular Medicine
                History
                : 22 April 2010
                : 15 June 2010
                : 27 June 2010
                Categories
                Review

                Molecular medicine
                hepatectomy,growth factor,liver regeneration,proliferation,apoptosis
                Molecular medicine
                hepatectomy, growth factor, liver regeneration, proliferation, apoptosis

                Comments

                Comment on this article