Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol

      1 , 1 , 1
      Annual Review of Biochemistry
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle—burning PI(4)P for the vectorial transfer of another lipid—might be general.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          The distribution and function of phosphatidylserine in cellular membranes.

          Phosphatidylserine (PS) is the most abundant negatively charged phospholipid in eukaryotic membranes. PS directs the binding of proteins that bear C2 or gamma-carboxyglutamic domains and contributes to the electrostatic association of polycationic ligands with cellular membranes. Rather than being evenly distributed, PS is found preferentially in the inner leaflet of the plasma membrane and in endocytic membranes. The loss of PS asymmetry is an early indicator of apoptosis and serves as a signal to initiate blood clotting. This review discusses the determinants and functional implications of the subcellular distribution and membrane topology of PS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipid landscapes and pipelines in membrane homeostasis.

            The lipid composition of cellular organelles is tailored to suit their specialized tasks. A fundamental transition in the lipid landscape divides the secretory pathway in early and late membrane territories, allowing an adaptation from biogenic to barrier functions. Defending the contrasting features of these territories against erosion by vesicular traffic poses a major logistical problem. To this end, cells evolved a network of lipid composition sensors and pipelines along which lipids are moved by non-vesicular mechanisms. We review recent insights into the molecular basis of this regulatory network and consider examples in which malfunction of its components leads to system failure and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP.

              Several proteins at endoplasmic reticulum (ER)-Golgi membrane contact sites contain a PH domain that interacts with the Golgi phosphoinositide PI(4)P, a FFAT motif that interacts with the ER protein VAP-A, and a lipid transfer domain. This architecture suggests the ability to both tether organelles and transport lipids between them. We show that in oxysterol binding protein (OSBP) these two activities are coupled by a four-step cycle. Membrane tethering by the PH domain and the FFAT motif enables sterol transfer by the lipid transfer domain (ORD), followed by back transfer of PI(4)P by the ORD. Finally, PI(4)P is hydrolyzed in cis by the ER protein Sac1. The energy provided by PI(4)P hydrolysis drives sterol transfer and allows negative feedback when PI(4)P becomes limiting. Other lipid transfer proteins are tethered by the same mechanism. Thus, OSBP-mediated back transfer of PI(4)P might coordinate the transfer of other lipid species at the ER-Golgi interface. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biochemistry
                Annu. Rev. Biochem.
                Annual Reviews
                0066-4154
                1545-4509
                June 20 2018
                June 20 2018
                : 87
                : 1
                : 809-837
                Affiliations
                [1 ]Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
                Article
                10.1146/annurev-biochem-061516-044924
                29596003
                37dc8d48-06b7-4dcf-b9fa-f48ebc55f41b
                © 2018
                History

                Comments

                Comment on this article