Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

Ancient mitochondrial DNA sequences of Jomon teeth samples from Sanganji, Tohoku district, Japan

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 37

      • Record: found
      • Abstract: not found
      • Article: not found

      Estimating F-Statistics for the Analysis of Population Structure

       B Weir,  C. Cockerham (1984)
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Application of phylogenetic networks in evolutionary studies.

        The evolutionary history of a set of taxa is usually represented by a phylogenetic tree, and this model has greatly facilitated the discussion and testing of hypotheses. However, it is well known that more complex evolutionary scenarios are poorly described by such models. Further, even when evolution proceeds in a tree-like manner, analysis of the data may not be best served by using methods that enforce a tree structure but rather by a richer visualization of the data to evaluate its properties, at least as an essential first step. Thus, phylogenetic networks should be employed when reticulate events such as hybridization, horizontal gene transfer, recombination, or gene duplication and loss are believed to be involved, and, even in the absence of such events, phylogenetic networks have a useful role to play. This article reviews the terminology used for phylogenetic networks and covers both split networks and reticulate networks, how they are defined, and how they can be interpreted. Additionally, the article outlines the beginnings of a comprehensive statistical framework for applying split network methods. We show how split networks can represent confidence sets of trees and introduce a conservative statistical test for whether the conflicting signal in a network is treelike. Finally, this article describes a new program, SplitsTree4, an interactive and comprehensive tool for inferring different types of phylogenetic networks from sequences, distances, and trees.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          A draft sequence of the Neandertal genome.

          Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
            Bookmark

            Author and article information

            Journal
            Anthropological Science
            AS
            Anthropological Society of Nippon
            0918-7960
            1348-8570
            2013
            2013
            : 121
            : 2
            : 89-103
            10.1537/ase.121113
            © 2013

            Comments

            Comment on this article