23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meta-analysis and suggested guidelines for prevention of venous thromboembolism (VTE) in foot and ankle surgery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To perform a meta-analysis investigating venous thromboembolism (VTE) following isolated foot and ankle surgery and propose guidelines for VTE prevention in this group of patients.

          Methods

          Following a PRISMA compliant search, 372 papers were identified and meta-analysis performed on 22 papers using the Critical Appraisal Skills Programme and Centre for Evidence-Based Medicine level of evidence.

          Results

          43,381 patients were clinically assessed for VTE and the incidence with and without chemoprophylaxis was 0.6 % (95 % CI 0.4–0.8 %) and 1 % (95 % CI 0.2–1.7 %), respectively. 1666 Patients were assessed radiologically and the incidence of VTE with and without chemoprophylaxis was 12.5 % (95 % CI 6.8–18.2 %) and 10.5 % (95 % CI 5.0–15.9 %), respectively. There was no significant difference in the rates of VTE with or without chemoprophylaxis whether assessed clinically or by radiological criteria. The risk of VTE in those patients with Achilles tendon rupture was greater with a clinical incidence of 7 % (95 % CI 5.5–8.5 %) and radiological incidence of 35.3 % (95 % CI 26.4–44.3 %).

          Conclusion

          Isolated foot and ankle surgery has a lower incidence of clinically apparent VTE when compared to general lower limb procedures, and this rate is not significantly reduced using low molecular weight heparin. The incidence of VTE following Achilles tendon rupture is high whether treated surgically or conservatively. With the exception of those with Achilles tendon rupture, routine use of chemical VTE prophylaxis is not justified in those undergoing isolated foot and ankle surgery, but patient-specific risk factors for VTE should be used to assess patients individually.

          Level of evidence

          II.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.

          VTE is a serious, but decreasing complication following major orthopedic surgery. This guideline focuses on optimal prophylaxis to reduce postoperative pulmonary embolism and DVT. The methods of this guideline follow those described in Methodology for the Development of Antithrombotic Therapy and Prevention of Thrombosis Guidelines: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines in this supplement. In patients undergoing major orthopedic surgery, we recommend the use of one of the following rather than no antithrombotic prophylaxis: low-molecular-weight heparin; fondaparinux; dabigatran, apixaban, rivaroxaban (total hip arthroplasty or total knee arthroplasty but not hip fracture surgery); low-dose unfractionated heparin; adjusted-dose vitamin K antagonist; aspirin (all Grade 1B); or an intermittent pneumatic compression device (IPCD) (Grade 1C) for a minimum of 10 to 14 days. We suggest the use of low-molecular-weight heparin in preference to the other agents we have recommended as alternatives (Grade 2C/2B), and in patients receiving pharmacologic prophylaxis, we suggest adding an IPCD during the hospital stay (Grade 2C). We suggest extending thromboprophylaxis for up to 35 days (Grade 2B). In patients at increased bleeding risk, we suggest an IPCD or no prophylaxis (Grade 2C). In patients who decline injections, we recommend using apixaban or dabigatran (all Grade 1B). We suggest against using inferior vena cava filter placement for primary prevention in patients with contraindications to both pharmacologic and mechanical thromboprophylaxis (Grade 2C). We recommend against Doppler (or duplex) ultrasonography screening before hospital discharge (Grade 1B). For patients with isolated lower-extremity injuries requiring leg immobilization, we suggest no thromboprophylaxis (Grade 2B). For patients undergoing knee arthroscopy without a history of VTE, we suggest no thromboprophylaxis (Grade 2B). Optimal strategies for thromboprophylaxis after major orthopedic surgery include pharmacologic and mechanical approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis.

            Heparin-induced thrombocytopenia (HIT) is an uncommon but potentially devastating complication of anticoagulation with unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH). Our objective was to determine and compare the incidences of HIT in surgical and medical patients receiving thromboprophylaxis with either UFH or LMWH. All relevant studies identified in the MEDLINE database (1984-2004), not limited by language, and from reference lists of key articles were evaluated. Randomized and nonrandomized controlled trials comparing prophylaxis with UFH and LMWH and measuring HIT or thrombocytopenia as outcomes were included. Two reviewers independently extracted data on thromboprophylaxis (type, dose, frequency, and duration), definition of thrombocytopenia, HIT assay, and rates of the following outcomes: HIT, thrombocytopenia, and thromboembolic events. HIT was defined as a decrease in platelets to less than 50% or to less than 100 x 10(9)/L and positive laboratory HIT assay. Fifteen studies (7287 patients) were eligible: 2 randomized controlled trials (RCTs) measuring HIT (1014 patients), 3 prospective studies (1464 patients) with nonrandomized comparison groups in which HIT was appropriately measured in both groups, and 10 RCTs (4809 patients) measuring thrombocytopenia but not HIT. Three analyses were performed using a random effects model and favored the use of LMWH: (1) RCTs measuring HIT showed an odds ratio (OR) of 0.10 (95% confidence interval [CI], 0.01-0.2; P = .03); (2) prospective studies measuring HIT showed an OR of 0.10 (95% CI, 0.03-0.33; P < .001); (3) all 15 studies measured thrombocytopenia. The OR was 0.47 (95% CI, 0.22-1.02; P = .06). The inverse variance-weighted average that determined the absolute risk for HIT with LMWH was 0.2%, and with UFH the risk was 2.6%. Most studies were of patients after orthopedic surgery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Venous thrombosis: a multicausal disease.

              The risk factors for venous thrombosis differ from those for arterial vascular disease. During the past 5 years, knowledge about the aetiology of venous thrombosis has advanced with the discovery of several factors that contribute to the incidence of thrombosis, particularly the role of coagulation abnormalities. These abnormalities are common in the general population and therefore will be present simultaneously in some individuals. The resultant gene-gene and gene-environment interactions between risk factors are the key to the understanding of why a certain person develops thrombosis at a specific point in time.
                Bookmark

                Author and article information

                Contributors
                +44(0)2031962440 , james.calder@fortiusclinic.com
                Journal
                Knee Surg Sports Traumatol Arthrosc
                Knee Surg Sports Traumatol Arthrosc
                Knee Surgery, Sports Traumatology, Arthroscopy
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0942-2056
                1433-7347
                18 March 2016
                18 March 2016
                2016
                : 24
                : 1409-1420
                Affiliations
                [ ]The Fortius Clinic, London, UK
                [ ]The Chelsea and Westminster Hospital NHS Trust, Imperial College, London, UK
                [ ]Orthopaedic Department, Danderyd Hospital AB, Stockholm, Sweden
                [ ]Orthopaedic Department, Amsterdam Medical Centre, Amsterdam, The Netherlands
                [ ]Orthopaedic Department, Karolinska University Hospital, Stockholm, Sweden
                [ ]Institution of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
                Article
                3976
                10.1007/s00167-015-3976-y
                4823373
                26988553
                38b29f7a-9d4b-4d7a-bf8b-d97626e92c7b
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 4 October 2015
                : 22 December 2015
                Categories
                Ankle
                Custom metadata
                © European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2016

                Surgery
                deep vein thrombosis,foot and ankle surgery,venous thromboembolism,low molecular weight heparin,achilles tendon,lower limb surgery

                Comments

                Comment on this article