25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 2.2 Impact Factor I 5.8 CiteScore I 0.782 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Iron Sucrose Promotes Endothelial Injury and Dysfunction and Monocyte Adhesion/Infiltration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Intravenous (IV) iron preparations are widely used in the management of anemia in ESRD populations. Recent changes in reimbursement policy have dramatically increased the use of IV iron to lower the use of costly erythropoiesis-stimulating agents. These preparations are frequently administered with insufficient attention to the total body iron stores or presence of inflammation which is aggravated by excess iron. Endothelial injury and dysfunction are critical steps in atherosclerosis, thrombosis and cardiovascular disease. IV iron preparations raise plasma non-transferrin-bound iron which can promote oxidative stress, endothelial damage and dysfunction. We explored the effect of an IV iron preparation on endothelial cells, monocytes and isolated arteries. Methods: Primary cultures of human aortic endothelial cells (HAEC) were treated with pharmacologically relevant concentrations of iron sucrose (10–100 µg/ml) for 4–24 h. Endothelial cell morphology, viability, and monocyte adhesion were tested. Endothelial function was assessed by measuring the vasorelaxation response to acetylcholine in normal rat thoracic aorta rings preincubated with iron sucrose (200 µg/ml). Results: In contrast to the control HAEC which showed normal cobblestone appearance, cells treated with iron sucrose (50–100 µg/ml) for 4 h showed loss of normal morphological characteristics, cellular fragmentation, shrinkage, detachment, monolayer disruption and nuclear condensation/fragmentation features signifying apoptosis. HAEC exposure to iron sucrose (10–100 µg/ml) increased monocyte adhesion 5- to 25-fold. Incubation in media containing 200 µg/ml iron sucrose for 3 h caused marked reduction in the acetylcholine-mediated relaxation in phenylephrine-precontracted rat aorta. Conclusion: Pharmacologically relevant concentration of iron sucrose results in endothelial injury and dysfunction and marked increase in monocyte adhesion.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Red cells, hemoglobin, heme, iron, and atherogenesis.

          We investigated whether red cell infiltration of atheromatous lesions promotes the later stages of atherosclerosis. We find that oxidation of ferro (FeII) hemoglobin in ruptured advanced lesions occurs generating ferri (FeIII) hemoglobin and via more extensive oxidation ferrylhemoglobin (FeIII/FeIV=O). The protein oxidation marker dityrosine accumulates in complicated lesions, accompanied by the formation of cross-linked hemoglobin, a hallmark of ferrylhemoglobin. Exposure of normal red cells to lipids derived from atheromatous lesions causes hemolysis and oxidation of liberated hemoglobin. In the interactions between hemoglobin and atheroma lipids, hemoglobin and heme promote further lipid oxidation and subsequently endothelial reactions such as upregulation of heme oxygenase-1 and cytotoxicity to endothelium. Oxidative scission of heme leads to release of iron and a feed-forward process of iron-driven plaque lipid oxidation. The inhibition of heme release from globin by haptoglobin and sequestration of heme by hemopexin suppress hemoglobin-mediated oxidation of lipids of atheromatous lesions and attenuate endothelial cytotoxicity. The interior of advanced atheromatous lesions is a prooxidant environment in which erythrocytes lyse, hemoglobin is oxidized to ferri- and ferrylhemoglobin, and released heme and iron promote further oxidation of lipids. These events amplify the endothelial cell cytotoxicity of plaque components.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease.

            Intravenous iron is widely prescribed in patients with chronic kidney disease (CKD) and can cause oxidative stress. The relationship of oxidative stress and renal injury in patients with CKD is unknown. Whether renal injury can occur at a time point when transferrin is incompletely saturated is also unclear. We conducted a randomized, open-label, parallel group trial to compare the oxidative stress induced by intravenous administration of 100 mg iron sucrose over 5 minutes and its protection with N-acetylcysteine (NAC) in 20 subjects with stage 3 or 4 CKD. Transferrin saturation was measured with urea polyacrylamide gel electrophoresis, oxidative stress by malondialdehyde (MDA) measurement by high-performance liquid chromatography, and renal injury by enzymuria and proteinuria. Reduced and oxidized glutathione and free radical scavengers as well as urinary monocyte chemoattractant protein-1 were also measured. Parenteral iron increased plasma concentration and urinary excretion rate of MDA, a biomarker of lipid peroxidation, within 15 to 30 minutes of iron sucrose administration. This was accompanied by enzymuria and increase in proteinuria. In contrast, saturation of transferrin was not maximally seen until 3 hours after the end of infusion. Oxidative stress, enzymuria and proteinuria were transient and were completely resolved in 24 hours. NAC reduced acute generation of systemic oxidative stress but failed to abrogate proteinuria or enzymuria. Intravenous iron produces oxidative stress that is associated with transient proteinuria and tubular damage. The rapid production of oxidative stress even when transferrin is not completely saturation suggests free iron independent mechanism(s) to be operative in producing oxidative stress and transient renal injury. Long-term implications of these findings need further study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: a randomized controlled trial.

              Accumulation of iron in excess of physiologic requirements has been implicated in risk of cardiovascular disease because of increased iron-catalyzed free radical-mediated oxidative stress. To test the hypothesis that reducing body iron stores through phlebotomy will influence clinical outcomes in a cohort of patients with symptomatic peripheral arterial disease (PAD). Multicenter, randomized, controlled, single-blinded clinical trial based on the Iron (Fe) and Atherosclerosis Study (FeAST) (VA Cooperative Study #410) and conducted between May 1, 1999, and April 30, 2005, within the Department of Veterans Affairs Cooperative Studies Program and enrolling 1277 patients with symptomatic but stable PAD. Those with conditions likely to cause acute-phase increase of the ferritin level or with a diagnosis of visceral malignancy within the preceding 5 years were excluded. Analysis was by intent-to-treat. Patients were assigned to a control group (n = 641) or to a group undergoing reduction of iron stores by phlebotomy with removal of defined volumes of blood at 6-month intervals (avoiding iron deficiency) (n = 636), stratified by hospital, age, and baseline smoking status, diagnosis of diabetes mellitus, ratio of high-density to low-density lipoprotein cholesterol level, and ferritin level. The primary end point was all-cause mortality; the secondary end point was death plus nonfatal myocardial infarction and stroke. There were no significant differences between treatment groups for the primary or secondary study end points. All-cause deaths occurred in 148 patients (23%) in the control group and in 125 (20%) in the iron-reduction group (hazard ratio (HR), 0.85; 95% confidence interval (CI), 0.67-1.08; P = .17). Death plus nonfatal myocardial infarction and stroke occurred in 205 patients (32%) in the control group and in 180 (28%) in the iron-reduction group (HR, 0.88; 95% CI, 0.72-1.07; P = .20). Reduction of body iron stores in patients with symptomatic PAD did not significantly decrease all-cause mortality or death plus nonfatal myocardial infarction and stroke. Clinicaltrials.gov Identifier: NCT00032357.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                S. Karger AG
                0250-8095
                1421-9670
                2012
                February 2012
                29 December 2011
                : 35
                : 2
                : 114-119
                Affiliations
                aDivision of Nephrology and Hypertension, University of California, Irvine, Calif., bVA Healthcare System, Long Beach, Calif., and cDepartment of Internal Medicine, Charles Drew University, Los Angeles, Calif., USA
                Author notes
                *Vaijinath S. Kamanna, PhD, Medical Research Service (09-151), VA Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822 (USA), Tel. +1 562 826 5820, E-Mail Vaijinath.kamanna@va.gov
                Article
                334939 PMC3265804 Am J Nephrol 2012;35:114–119
                10.1159/000334939
                PMC3265804
                22212390
                39f0d239-03bc-4d69-9feb-282e09d163a0
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 26 September 2011
                : 08 November 2011
                Page count
                Figures: 4, Pages: 6
                Categories
                Original Report: Laboratory Investigation

                Cardiovascular Medicine,Nephrology
                Iron sucrose,Oxidative stress,Cardiovascular disease,Endothelial function,End-stage renal disease,Atherosclerosis

                Comments

                Comment on this article