25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β 1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database.

          The past decade has witnessed hundreds of reports declaring or refuting genetic association with putative Alzheimer disease susceptibility genes. This wealth of information has become increasingly difficult to follow, much less interpret. We have created a publicly available, continuously updated database that comprehensively catalogs all genetic association studies in the field of Alzheimer disease (http://www.alzgene.org). We performed systematic meta-analyses for each polymorphism with available genotype data in at least three case-control samples. In addition to identifying the epsilon4 allele of APOE and related effects, we pinpointed over a dozen potential Alzheimer disease susceptibility genes (ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, PSEN1, TF, TFAM and TNF) with statistically significant allelic summary odds ratios (ranging from 1.11-1.38 for risk alleles and 0.92-0.67 for protective alleles). Our database provides a powerful tool for deciphering the genetics of Alzheimer disease, and it serves as a potential model for tracking the most viable gene candidates in other genetically complex diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.

            Apolipoprotein E is immunochemically localized to the senile plaques, vascular amyloid, and neurofibrillary tangles of Alzheimer disease. In vitro, apolipoprotein E in cerebrospinal fluid binds to synthetic beta A4 peptide (the primary constituent of the senile plaque) with high avidity. Amino acids 12-28 of the beta A4 peptide are required. The gene for apolipoprotein E is located on chromosome 19q13.2, within the region previously associated with linkage of late-onset familial Alzheimer disease. Analysis of apolipoprotein E alleles in Alzheimer disease and controls demonstrated that there was a highly significant association of apolipoprotein E type 4 allele (APOE-epsilon 4) and late-onset familial Alzheimer disease. The allele frequency of the APOE-epsilon 4 in 30 random affected patients, each from a different Alzheimer disease family, was 0.50 +/- 0.06; the allele frequency of APOE-epsilon 4 in 91 age-matched unrelated controls was 0.16 +/- 0.03 (Z = 2.44, P = 0.014). A functional role of the apolipoprotein E-E4 isoform in the pathogenesis of late-onset familial Alzheimer disease is suggested.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Locus-Specific Mutation Databases for Neurodegenerative Brain Diseases

              The Alzheimer disease and frontotemporal dementia (AD&FTLD) and Parkinson disease (PD) Mutation Databases make available curated information of sequence variations in genes causing Mendelian forms of the most common neurodegenerative brain disease AD, frontotemporal lobar degeneration (FTLD), and PD. They are established resources for clinical geneticists, neurologists, and researchers in need of comprehensive, referenced genetic, epidemiologic, clinical, neuropathological, and/or cell biological information of specific gene mutations in these diseases. In addition, the aggregate analysis of all information available in the databases provides unique opportunities to extract mutation characteristics and genotype–phenotype correlations, which would be otherwise unnoticed and unexplored. Such analyses revealed that 61.4% of mutations are private to one single family, while only 5.7% of mutations occur in 10 or more families. The five mutations with most frequent independent observations occur in 21% of AD, 43% of FTLD, and 48% of PD families recorded in the Mutation Databases, respectively. Although these figures are inevitably biased by a publishing policy favoring novel mutations, they probably also reflect the occurrence of multiple rare and few relatively common mutations in the inherited forms of these diseases. Finally, with the exception of the PD genes PARK2 and PINK1, all other genes are associated with more than one clinical diagnosis or characteristics thereof. Hum Mutat 33:1340–1344, 2012. © 2012 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Croat Med J
                Croat. Med. J
                CMJ
                Croatian Medical Journal
                Croatian Medical Schools
                0353-9504
                1332-8166
                August 2014
                : 55
                : 4
                : 347-365
                Affiliations
                [1 ]Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
                [2 ]Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
                [3 ]Department of Pathology and Cytology, “Sveti Duh” Clinical Hospital, Zagreb, Croatia
                [4 ]Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
                Author notes
                Correspondence to: 
Goran Šimić 
Croatian Institute for Brain Research
University of Zagreb School of Medicine
Šalata 12
10000 Zagreb, Croatia
 gsimic@ 123456hiim.hr
                Article
                CroatMedJ_55_0347
                10.3325/cmj.2014.55.347
                4157375
                25165049
                3a003d66-50ee-4247-ad2c-3d9702e21a76
                Copyright © 2014 by the Croatian Medical Journal. All rights reserved.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 March 2014
                : 19 May 2014
                Categories
                Cerebrospinal Fluid Physiology and Movement

                Medicine
                Medicine

                Comments

                Comment on this article