27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A proteomic analysis of the regulon of the NarP two-component regulatory system response regulator in the bovine pathogen Mannheimia haemolytica A1

      research-article
      1 , 1 ,
      BMC Research Notes
      BioMed Central
      narP mutant, 2D electrophoresis, LC-MS

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The response of the NarQP two-component signal transduction system regulon in response to the presence of nitrate for the bovine pathogen Mannheimia haemolytica A1 was investigated by proteomic analysis. Total proteins from a narP mutant and the parent SH1217 grown with or without NaNO 3 supplement were examined by ISO-DALT 2D electrophoresis and liquid chromatography-mass spectrometry.

          Results

          Seventeen proteins were differentially expressed in the parent strain SH1217 in response to the addition of NaNO 3 to the growth media. These responses were absent in the narP mutant, indicating that the altered production of these proteins is mediated by NarP Mh . Interestingly, NarP Mh mediated the increased production of some proteins which are not generally associated with nitrate respiration, such as the iron transporters FbpA and YfeA. The increased production of proteins such as superoxide dismutase, SodA, and GAPDH were also observed. The increased production of these iron-regulated proteins by NarP Mh is thought to enhance the swift establishment of the nitrate respiration mechanism of M. haemolytica during pathogenesis.

          Conclusion

          The data suggested NarP Mh acts as an important regulator which regulates the expression of a small set of proteins in response to nitrate availability. This may contribute to the prevalence of M. haemolytica A1 in its host during pathogenesis of BPP, through enhancing the effectiveness of nitrate respiration either directly or indirectly.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Two-component signal transduction.

          Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis.

            Organisms generally respond to iron deficiency by increasing their capacity to take up iron and by consuming intracellular iron stores. Escherichia coli, in which iron metabolism is particularly well understood, contains at least 7 iron-acquisition systems encoded by 35 iron-repressed genes. This Fe-dependent repression is mediated by a transcriptional repressor, Fur (ferric uptake regulation), which also controls genes involved in other processes such as iron storage, the Tricarboxylic Acid Cycle, pathogenicity, and redox-stress resistance. Our macroarray-based global analysis of iron- and Fur-dependent gene expression in E. coli has revealed several novel Fur-repressed genes likely to specify at least three additional iron-transport pathways. Interestingly, a large group of energy metabolism genes was found to be iron and Fur induced. Many of these genes encode iron-rich respiratory complexes. This iron- and Fur-dependent regulation appears to represent a novel iron-homeostatic mechanism whereby the synthesis of many iron-containing proteins is repressed under iron-restricted conditions. This mechanism thus accounts for the low iron contents of fur mutants and explains how E. coli can modulate its iron requirements. Analysis of 55Fe-labeled E. coli proteins revealed a marked decrease in iron-protein composition for the fur mutant, and visible and EPR spectroscopy showed major reductions in cytochrome b and d levels, and in iron-sulfur cluster contents for the chelator-treated wild-type and/or fur mutant, correlating well with the array and quantitative RT-PCR data. In combination, the results provide compelling evidence for the regulation of intracellular iron consumption by the Fe2+-Fur complex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching.

              We describe the impact of advances in mass measurement accuracy, +/- 10 ppm (internally calibrated), on protein identification experiments. This capability was brought about by delayed extraction techniques used in conjunction with matrix-assisted laser desorption ionization (MALDI) on a reflectron time-of-flight (TOF) mass spectrometer. This work explores the advantage of using accurate mass measurement (and thus constraint on the possible elemental composition of components in a protein digest) in strategies for searching protein, gene, and EST databases that employ (a) mass values alone, (b) fragment-ion tagging derived from MS/MS spectra, and (c) de novo interpretation of MS/MS spectra. Significant improvement in the discriminating power of database searches has been found using only molecular weight values (i.e., measured mass) of > 10 peptide masses. When MALDI-TOF instruments are able to achieve the +/- 0.5-5 ppm mass accuracy necessary to distinguish peptide elemental compositions, it is possible to match homologous proteins having > 70% sequence identity to the protein being analyzed. The combination of a +/- 10 ppm measured parent mass of a single tryptic peptide and the near-complete amino acid (AA) composition information from immonium ions generated by MS/MS is capable of tagging a peptide in a database because only a few sequence permutations > 11 AA's in length for an AA composition can ever be found in a proteome. De novo interpretation of peptide MS/MS spectra may be accomplished by altering our MS-Tag program to replace an entire database with calculation of only the sequence permutations possible from the accurate parent mass and immonium ion limited AA compositions. A hybrid strategy is employed using de novo MS/MS interpretation followed by text-based sequence similarity searching of a database.
                Bookmark

                Author and article information

                Journal
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2011
                24 November 2011
                : 4
                : 510
                Affiliations
                [1 ]Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
                Article
                1756-0500-4-510
                10.1186/1756-0500-4-510
                3262028
                22114901
                3a581aa9-abdc-4571-9521-c6650927f02b
                Copyright ©2011 Inamoto et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

                History
                : 11 July 2011
                : 24 November 2011
                Categories
                Research Article

                Medicine
                lc-ms,narp mutant,2d electrophoresis
                Medicine
                lc-ms, narp mutant, 2d electrophoresis

                Comments

                Comment on this article