60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury.

          Related collections

          Most cited references304

          • Record: found
          • Abstract: found
          • Article: not found

          Peroxynitrite: biochemistry, pathophysiology and development of therapeutics.

          Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection.

            Reperfusion of the heart after a period of ischaemia leads to the opening of a nonspecific pore in the inner mitochondrial membrane, known as the mitochondrial permeability transition pore (MPTP). This transition causes mitochondria to become uncoupled and capable of hydrolysing rather than synthesising ATP. Unrestrained, this will lead to the loss of ionic homeostasis and ultimately necrotic cell death. The functional recovery of the Langendorff-perfused heart from ischaemia inversely correlates with the extent of pore opening, and inhibition of the MPTP provides protection against reperfusion injury. This may be mediated either by a direct interaction with the MPTP [e.g., by Cyclosporin A (CsA) and Sanglifehrin A (SfA)], or indirectly by decreasing calcium loading and reactive oxygen species (ROS; key inducers of pore opening) or lowering intracellular pH. Agents working in this way may include pyruvate, propofol, Na+/H+ antiporter inhibitors, and ischaemic preconditioning (IPC). Mitochondrial KATP channels have been implicated in preconditioning, but our own data suggest that the channel openers and blockers used in these studies work through alternative mechanisms. In addition to its role in necrosis, transient opening of the MPTP may occur and lead to the release of cytochrome c and other proapoptotic molecules that initiate the apoptotic cascade. However, only if subsequent MPTP closure occurs will ATP levels be maintained, ensuring that cell death continues down an apoptotic, rather than a necrotic, pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction.

              Mitochondrial dysfunction is a prominent feature of most cardiovascular diseases. Angiotensin (Ang) II is an important stimulus for atherogenesis and hypertension; however, its effects on mitochondrial function remain unknown. We hypothesized that Ang II could induce mitochondrial oxidative damage that in turn might decrease endothelial nitric oxide (NO.) bioavailability and promote vascular oxidative stress. The effect of Ang II on mitochondrial ROS, mitochondrial respiration, membrane potential, glutathione, and endothelial NO. was studied in isolated mitochondria and intact bovine aortic endothelial cells using electron spin resonance, dihydroethidium high-performance liquid chromatography -based assay, Amplex Red and cationic dye fluorescence. Ang II significantly increased mitochondrial H2O2 production. This increase was blocked by preincubation of intact cells with apocynin (NADPH oxidase inhibitor), uric acid (scavenger of peroxynitrite), chelerythrine (protein kinase C inhibitor), N(G)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), 5-hydroxydecanoate (mitochondrial ATP-sensitive potassium channels inhibitor), or glibenclamide. Depletion of p22(phox) subunit of NADPH oxidase with small interfering RNA also inhibited Ang II-mediated mitochondrial ROS production. Ang II depleted mitochondrial glutathione, increased state 4 and decreased state 3 respirations, and diminished mitochondrial respiratory control ratio. These responses were attenuated by apocynin, 5-hydroxydecanoate, and glibenclamide. In addition, 5-hydroxydecanoate prevented the Ang II-induced decrease in endothelial NO. and mitochondrial membrane potential. Therefore, Ang II induces mitochondrial dysfunction via a protein kinase C-dependent pathway by activating the endothelial cell NADPH oxidase and formation of peroxynitrite. Furthermore, mitochondrial dysfunction in response to Ang II modulates endothelial NO. and generation, which in turn has ramifications for development of endothelial dysfunction.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physio.
                Frontiers in Physiology
                Frontiers Research Foundation
                1664-042X
                12 April 2011
                2011
                : 2
                : 13
                Affiliations
                [1] 1simpleDepartment of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
                [2] 2simpleCardiovascular Research Center, Medical College of Wisconsin Milwaukee, WI, USA
                [3] 3simpleDepartment of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, WI, USA
                [4] 4simpleDepartment of Physiology, Medical College of Wisconsin Milwaukee, WI, USA
                [5] 5simpleResearch Service, Veterans Affairs Medical Center Milwaukee, WI, USA
                [6] 6simpleDepartment of Biomedical Engineering, Marquette University Milwaukee, WI, USA
                Author notes

                Edited by: Miguel A. Aon, Johns Hopkins University School of Medicine, USA

                Reviewed by: Valdur Saks, National Institute of Chemical Physics and Biophysics, Estonia; Nazareno Paolocci, Johns Hopkins University, USA; Shey-Shing Sheu, University of Rochester, USA

                *Correspondence: Amadou K. S. Camara, Medical College of Wisconsin, M4240, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA. e-mail: aksc@ 123456mcw.edu

                This article was submitted to Frontiers in Mitochondrial Research, a specialty of Frontiers in Physiology.

                Article
                10.3389/fphys.2011.00013
                3082167
                21559063
                3ac71806-cbb3-41fc-8dc5-836dcd6a203d
                Copyright © 2011 Camara, Bienengraeber and Stowe.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 27 October 2010
                : 24 March 2011
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 359, Pages: 34, Words: 36153
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                mitochondrial ca2+,mitochondria,therapy,cardiac metabolism,nitric oxide,cardiac ischemia/reperfusion,reactive oxygen species,peroxynitrite

                Comments

                Comment on this article