3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potassium depletion induces cellular conversion in the outer medullary collecting duct altering Notch signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Potassium depletion affects AQP2 expression and the cellular composition of the kidney collecting duct. This, in turn, contributes to the development of a secondary form of nephrogenic diabetes insipidus and hypokalemic nephropathy. Here we show that after 14 days of potassium depletion, the cellular fraction of A-type intercalated cells increases while the fraction of principal cells decreases along the outer medullary collecting duct in rats. The intercalated cells acquired a novel distribution pattern forming rows of cells attached to each other. These morphological changes occur progressively and reverse after 7 days of recovery on normal rat chow diet. The cellular remodeling mainly occurred in the inner stripe of outer medulla similar to the previously seen effect of lithium on the collecting duct cellular profile. The cellular remodeling is associated with the appearance of cells double labelled with both specific markers of principal and type-A intercalated cells. The appearance of this cell type was associated with the downregulation of the Notch signaling via the Hes1 pathways. These results show that the epithelium of the collecting duct has a high degree of plasticity and that Notch signaling likely plays a key role during hypokalemia.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex.

          Prolonged hypokalemia causes vasopressin-resistant polyuria. We have recently shown that another cause of severe polyuria, chronic lithium therapy, is associated with decreased aquaporin-2 (AQP2) water channel expression (Marples, D., S. Christensen, E.I. Christensen, P.D. Ottosen, and S. Nielsen, 1995. J. Clin. Invest., 95: 1838-1845). Consequently, we studied the effect in rats of 11 days' potassium deprivation on urine production and AQP2 expression and distribution. Membrane fractions were prepared from one kidney, while the contralateral kidney was perfusion-fixed for immunocytochemistry. Immunoblotting and densitometry revealed a decrease in AQP2 levels to 27+/-3.4% of control levels (n=11, P<0.001) in inner medulla, and 34+/-15% of controls (n=5, P<0.05) in cortex. Urine production increased in parallel, from 11+/-1.4 to 30+/-4.4 ml/day (n=11, P<0.01). After return to a potassium-containing diet both urine output and AQP2 labels normalized within 7 d. Immunocytochemistry confirmed decreased AQP2 labeling in principal cells of both inner medullary and cortical collecting ducts. AQP2 labeling was predominantly associated with the apical plasma membrane and intracellular vesicles. Lithium treatment for 24 d caused a more extensive reduction of AQP2 levels, to 4+/-1% of control levels in the inner medulla and 4+/-2% in cortex, in association with severe polyuria. The similar degree of downregulation in medulla and cortex suggests that interstitial tonicity is not the major factor in the regulation of AQP2 expression. Consistent with this furosemide treatment did not alter AQP2 levels. In summary,hypokalemia, like lithium treatment, results in a decrease in AQP2 expression in rat collecting ducts, in parallel with the development of polyuria, and the degree of downregulation is consistent with the level of polyuria induced, supporting the view that there is a causative link.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thiazide diuretics exacerbate fructose-induced metabolic syndrome.

            Fructose is a commonly used sweetener associated with diets that increase the prevalence of metabolic syndrome. Thiazide diuretics are frequently used in these patients for treatment of hypertension, but they also exacerbate metabolic syndrome. Rats on high-fructose diets that are given thiazides exhibit potassium depletion and hyperuricemia. Potassium supplementation improves their insulin resistance and hypertension, whereas allopurinol reduces serum levels of uric acid and ameliorates hypertension, hypertriglyceridemia, hyperglycemia, and insulin resistance. Both potassium supplementation and treatment with allopurinol also increase urinary nitric oxide excretion. We suggest that potassium depletion and hyperuricemia in rats exacerbates endothelial dysfunction and lowers the bioavailability of nitric oxide, which blocks insulin activity and causes insulin resistance during thiazide usage. Addition of potassium supplements and allopurinol with thiazides might be helpful in the management of metabolic syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice.

              The heterogeneous cellular composition of the mammalian renal collecting duct enables regulation of fluid, electrolytes, and acid-base homeostasis, but the molecular mechanism of its development has yet to be elucidated. The Notch signaling pathway is involved in cell fate determination and has been implicated in proximal-distal patterning in the mammalian kidney. To investigate the role of Notch signaling in renal collecting duct development, we generated mice in which Mind bomb-1 (Mib1), an E3 ubiquitin ligase required for the initiation of Notch signaling, was specifically inactivated in the ureteric bud of the developing kidney. Mice lacking Mib1 in the renal collecting duct displayed increased urinary production, decreased urinary osmolality, progressive hydronephrosis, sodium wasting, and a severe urinary concentrating defect manifested as nephrogenic diabetes insipidus. Histological analysis revealed a diminished number of principal cells and corresponding increase in the number of intercalated cells. Transgenic overexpression of Notch intracellular domain reversed the altered cellular composition of mutant renal collecting duct, with principal cells occupying the entire region. Our data demonstrate that Notch signaling is required for the development of the mammalian renal collecting duct and principal cell differentiation and indicate that pathway dysregulation may contribute to distal renal tubular disorders.
                Bookmark

                Author and article information

                Contributors
                Francesco.trepiccione@unicampania.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                31 March 2020
                31 March 2020
                2020
                : 10
                : 5708
                Affiliations
                [1 ]ISNI 0000 0004 4674 1402, GRID grid.428067.f, Biogem S.c.a.r.l., Istituto di Ricerche Genetiche “Gaetano Salvatore”, ; Ariano Irpino, Italy
                [2 ]Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, Naples, Italy
                [3 ]ISNI 0000 0001 1956 2722, GRID grid.7048.b, Department of Biomedicine, Aarhus University, ; Aarhus, Denmark
                Author information
                http://orcid.org/0000-0002-8760-1292
                http://orcid.org/0000-0003-3297-4953
                http://orcid.org/0000-0002-4303-7327
                Article
                61882
                10.1038/s41598-020-61882-7
                7109050
                32235870
                3b683db9-68c8-4d0d-9e13-c970ec5915af
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 July 2019
                : 24 February 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                nephrons
                Uncategorized
                nephrons

                Comments

                Comment on this article