13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards experimental quantum field tomography with ultracold atoms

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The experimental realisation of large scale many-body systems has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. In order to work with these emerging physical platforms, new technologies for state identification are required. In this work, we present first steps towards efficient experimental quantum field tomography. We employ our procedure to capture ultracold atomic systems using atom chips, a setup that allows for the quantum simulation of static and dynamical properties of interacting quantum fields. Our procedure is based on cMPS, the continuous analogues of matrix product states (MPS), ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. The reconstruction procedure is based on two- and four-point correlation functions, from which we predict higher-order correlation functions, thus validating our reconstruction for the experimental situation at hand. We apply our procedure to quenched prethermalisation experiments for quasi-condensates. In this setting, we can use the quality of our tomographic reconstruction as a probe for the non-equilibrium nature of the involved physical processes. We discuss the potential of such methods in the context of partial verification of analogue quantum simulators.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Area laws for the entanglement entropy - a review

          Physical interactions in quantum many-body systems are typically local: Individual constituents interact mainly with their few nearest neighbors. This locality of interactions is inherited by a decay of correlation functions, but also reflected by scaling laws of a quite profound quantity: The entanglement entropy of ground states. This entropy of the reduced state of a subregion often merely grows like the boundary area of the subregion, and not like its volume, in sharp contrast with an expected extensive behavior. Such "area laws" for the entanglement entropy and related quantities have received considerable attention in recent years. They emerge in several seemingly unrelated fields, in the context of black hole physics, quantum information science, and quantum many-body physics where they have important implications on the numerical simulation of lattice models. In this Colloquium we review the current status of area laws in these fields. Center stage is taken by rigorous results on lattice models in one and higher spatial dimensions. The differences and similarities between bosonic and fermionic models are stressed, area laws are related to the velocity of information propagation, and disordered systems, non-equilibrium situations, classical correlation concepts, and topological entanglement entropies are discussed. A significant proportion of the article is devoted to the quantitative connection between the entanglement content of states and the possibility of their efficient numerical simulation. We discuss matrix-product states, higher-dimensional analogues, and states from entanglement renormalization and conclude by highlighting the implications of area laws on quantifying the effective degrees of freedom that need to be considered in simulations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Goals and opportunities in quantum simulation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Relaxation and Pre-thermalization in an Isolated Quantum System

              Understanding relaxation processes is an important unsolved problem in many areas of physics. A key challenge in studying such non-equilibrium dynamics is the scarcity of experimental tools for characterizing their complex transient states. We employ measurements of full quantum mechanical probability distributions of matter-wave interference to study the relaxation dynamics of a coherently split one-dimensional Bose gas and obtain unprecedented information about the dynamical states of the system. Following an initial rapid evolution, the full distributions reveal the approach towards a thermal-like steady state characterized by an effective temperature that is independent from the initial equilibrium temperature of the system before the splitting process. We conjecture that this state can be described through a generalized Gibbs ensemble and associate it with pre-thermalization.
                Bookmark

                Author and article information

                Journal
                2014-06-13
                Article
                10.1038/ncomms8663
                1406.3632
                3b919223-93cf-47d6-939d-3c0bfda6d7aa

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Nature Communications 6, 7663 (2015)
                5+2 pages, 2 figures
                quant-ph cond-mat.quant-gas hep-th

                Quantum physics & Field theory,Quantum gases & Cold atoms,High energy & Particle physics

                Comments

                Comment on this article