5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of bone and cartilage in tissue-engineered human middle phalanx models.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human middle phalanges were tissue-engineered with midshaft scaffolds of poly(L-lactide-epsilon-caprolactone) [P(LA-CL)], hydroxyapatite-P(LA-CL), or beta-tricalcium phosphate-P(LA-CL) and end plate scaffolds of bovine chondrocyte-seeded polyglycolic acid. Midshafts were either wrapped with bovine periosteum or left uncovered. Constructs implanted in nude mice for up to 20 weeks were examined for cartilage and bone development as well as gene expression and protein secretion, which are important in extracellular matrix (ECM) formation and mineralization. Harvested 10- and 20-week constructs without periosteum maintained end plate cartilage but no growth plate formation. They also consisted of chondrocytes secreting type II collagen and proteoglycan, and they were composed of midshaft regions devoid of bone. In all periosteum-wrapped constructs at like times, end plate scaffolds held chondrocytes elaborating type II collagen and proteoglycan and cartilage growth plates resembling normal tissue. Chondrocyte gene expression of type II collagen, aggrecan, and bone sialoprotein varied depending on midshaft composition, presence of periosteum, and length of implantation time. Periosteum produced additional cells, ECM, and mineral formation within the different midshaft scaffolds. Periosteum thus induces midshaft development and mediates chondrocyte gene expression and growth plate formation in cartilage regions of phalanges. This work is important for understanding developmental principles of tissue-engineered phalanges and by extension those of normal growth plate cartilage and bone.

          Related collections

          Author and article information

          Journal
          Tissue Eng Part A
          Tissue engineering. Part A
          Mary Ann Liebert Inc
          1937-335X
          1937-3341
          Dec 2009
          : 15
          : 12
          Affiliations
          [1 ] Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio 44272, USA.
          Article
          10.1089/ten.TEA.2009.0078
          2792075
          19527181
          3bcae35a-8003-4a7d-b4a9-8a211799c696
          History

          Comments

          Comment on this article