1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plastic waste as pyrolysis feedstock for plastic oil production: A review

      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references178

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea

          Plastic pollution is ubiquitous throughout the marine environment, yet estimates of the global abundance and weight of floating plastics have lacked data, particularly from the Southern Hemisphere and remote regions. Here we report an estimate of the total number of plastic particles and their weight floating in the world's oceans from 24 expeditions (2007–2013) across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows (N = 680) and visual survey transects of large plastic debris (N = 891). Using an oceanographic model of floating debris dispersal calibrated by our data, and correcting for wind-driven vertical mixing, we estimate a minimum of 5.25 trillion particles weighing 268,940 tons. When comparing between four size classes, two microplastic 4.75 mm, a tremendous loss of microplastics is observed from the sea surface compared to expected rates of fragmentation, suggesting there are mechanisms at play that remove <4.75 mm plastic particles from the ocean surface.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A review on pyrolysis of plastic wastes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              A review on thermal and catalytic pyrolysis of plastic solid waste (PSW)

              Plastic plays an important role in our daily lives due to its versatility, light weight and low production cost. Plastics became essential in many sectors such as construction, medical, engineering applications, automotive, aerospace, etc. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. Hence, a sustainable and an efficient plastic waste treatment is essential to avoid such issues. Pyrolysis is a thermo-chemical plastic waste treatment technique which can solve such pollution problems, as well as, recover valuable energy and products such as oil and gas. Pyrolysis of plastic solid waste (PSW) has gained importance due to having better advantages towards environmental pollution and reduction of carbon footprint of plastic products by minimizing the emissions of carbon monoxide and carbon dioxide compared to combustion and gasification. This paper presents the existing techniques of pyrolysis, the parameters which affect the products yield and selectivity and identify major research gaps in this technology. The influence of different catalysts on the process as well as review and comparative assessment of pyrolysis with other thermal and catalytic plastic treatment methods, is also presented.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                June 2023
                June 2023
                : 877
                : 162719
                Article
                10.1016/j.scitotenv.2023.162719
                36933741
                3c4037b7-be0b-4eff-a2df-b9ced393ca1d
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article