4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of circulating MOG-specific B cells in patients with MOG antibodies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To identify circulating myelin oligodendrocyte glycoprotein (MOG)-specific B cells in the blood of patients with MOG antibodies (Abs) and to determine whether circulating MOG-specific B cells are linked to levels and epitope specificity of serum anti-MOG-Abs.

          Methods

          We compared peripheral blood from 21 patients with MOG-Abs and 26 controls for the presence of MOG-specific B cells. We differentiated blood-derived B cells in vitro in separate culture wells to Ab-producing cells via engagement of Toll-like receptors 7 and 8. We quantified the anti-MOG reactivity with a live cell–based assay by flow cytometry. We determined the recognition of MOG epitopes with a panel of mutated variants of MOG.

          Results

          MOG-Ab–positive patients had a higher frequency of MOG-specific B cells in blood than controls, but MOG-specific B cells were only detected in about 60% of these patients. MOG-specific B cells in blood showed no correlation with anti-MOG Ab levels in serum, neither in the whole group nor in the untreated patients. Epitope analysis of MOG-Abs secreted from MOG-specific B cells cultured in different wells revealed an intraindividual heterogeneity of the anti-MOG autoimmunity.

          Conclusions

          This study shows that patients with MOG-Abs greatly differ in the abundance of circulating MOG-specific B cells, which are not linked to levels of MOG-Abs in serum suggesting different sources of MOG-Abs. Identification of MOG-specific B cells in blood could be of future relevance for selecting patients with MOG-Abs for B cell–directed therapy.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Maintenance of serological memory by polyclonal activation of human memory B cells.

          Production of antibodies can last for a lifetime, through mechanisms that remain poorly understood. Here, we show that human memory B lymphocytes proliferate and differentiate into plasma cells in response to polyclonal stimuli, such as bystander T cell help and CpG DNA. Furthermore, plasma cells secreting antibodies to recall antigens are produced in vivo at levels proportional to the frequency of specific memory B cells, even several years after antigenic stimulation. Although antigen boosting leads to a transient increase in specific antibody levels, ongoing polyclonal activation of memory B cells offers a means to maintain serological memory for a human lifetime.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MOG encephalomyelitis: international recommendations on diagnosis and antibody testing

            Over the past few years, new-generation cell-based assays have demonstrated a robust association of autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis and brainstem encephalitis, as well as with acute disseminated encephalomyelitis (ADEM)-like presentations. Most experts now consider MOG-IgG-associated encephalomyelitis (MOG-EM) a disease entity in its own right, immunopathogenetically distinct from both classic multiple sclerosis (MS) and aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorders (NMOSD). Owing to a substantial overlap in clinicoradiological presentation, MOG-EM was often unwittingly misdiagnosed as MS in the past. Accordingly, increasing numbers of patients with suspected or established MS are currently being tested for MOG-IgG. However, screening of large unselected cohorts for rare biomarkers can significantly reduce the positive predictive value of a test. To lessen the hazard of overdiagnosing MOG-EM, which may lead to inappropriate treatment, more selective criteria for MOG-IgG testing are urgently needed. In this paper, we propose indications for MOG-IgG testing based on expert consensus. In addition, we give a list of conditions atypical for MOG-EM (“red flags”) that should prompt physicians to challenge a positive MOG-IgG test result. Finally, we provide recommendations regarding assay methodology, specimen sampling and data interpretation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myelin oligodendrocyte glycoprotein antibodies in neurological disease

              Anti-myelin oligodendrocyte glycoprotein (MOG) antibodies (MOG-Abs) were first detected by immunoblot and enzyme-linked immunosorbent assay nearly 30 years ago, but their association with multiple sclerosis (MS) was not specific. Use of cell-based assays with native MOG as the substrate enabled identification of a group of MOG-Ab-positive patients with demyelinating phenotypes. Initially, MOG-Abs were reported in children with acute disseminated encephalomyelitis (ADEM). Further studies identified MOG-Abs in adults and children with ADEM, seizures, encephalitis, anti-aquaporin-4-antibody (AQP4-Ab)-seronegative neuromyelitis optica spectrum disorder (NMOSD) and related syndromes (optic neuritis, myelitis and brainstem encephalitis), but rarely in MS. This shift in our understanding of the diagnostic assays has re-invigorated the examination of MOG-Abs and their role in autoimmune and demyelinating disorders of the CNS. The clinical phenotypes, disease courses and responses to treatment that are associated with MOG-Abs are currently being defined. MOG-Ab-associated disease is different to AQP4-Ab-positive NMOSD and MS. This Review provides an overview of the current knowledge of MOG, the metrics of MOG-Ab assays and the clinical associations identified. We collate the data on antibody pathogenicity and the mechanisms that are thought to underlie this. We also highlight differences between MOG-Ab-associated disease, NMOSD and MS, and describe our current understanding on how best to treat MOG-Ab-associated disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neurol Neuroimmunol Neuroinflamm
                Neurol Neuroimmunol Neuroinflamm
                nnn
                NEURIMMINFL
                Neurology® Neuroimmunology & Neuroinflammation
                Lippincott Williams & Wilkins (Hagerstown, MD )
                2332-7812
                November 2019
                14 October 2019
                14 October 2019
                : 6
                : 6
                : 625
                Affiliations
                From the Institute of Clinical Neuroimmunology (S.W., M. Schlüter, M. Spadaro, F.S.T., A.V., R.G., C.M., S.M., R.H., T.K., E.M.), Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Germany; Research Center for Translational Medicine (A.V.), Koç University School of Medicine, Istanbul, Turkey; Department of Neurology, (A.K., B.I., R.K.), Hacettepe University Faculty of Medicine, Ankara, Turkey; Department of Basic Oncology (F.G.Ö., G.E.), Hacettepe University Cancer Institute, Ankara Turkey; and Munich Cluster for Systems Neurology (SyNergy) (R.H.), Germany.
                Author notes
                Correspondence Dr. Meinl edgar.Meinl@ 123456med.uni-muenchen.de

                Go to Neurology.org/NN for full disclosures. Funding information is provided at the end of the article.

                The Article Processing Charge was funded by the authors.

                Article
                NEURIMMINFL2019021733
                10.1212/NXI.0000000000000625
                6857907
                31611268
                3c546e62-040a-41c7-9c36-145d19295d46
                Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                History
                : 07 June 2019
                : 20 August 2019
                Categories
                40
                42
                43
                131
                132
                Article
                Custom metadata
                TRUE

                Comments

                Comment on this article