29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Triptolide (TPL) Inhibits Global Transcription by Inducing Proteasome-Dependent Degradation of RNA Polymerase II (Pol II)

      research-article
      1 , 1 , 2 , 1 , 1 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triptolide (TPL), a key biologically active component of the Chinese medicinal herb Tripterygium wilfordii Hook. f., has potent anti-inflammation and anti-cancer activities. Its anti-proliferative and pro-apoptotic effects have been reported to be related to the inhibition of Nuclear Factor κB (NF-κB) and Nuclear Factor of Activated T-cells (NFAT) mediated transcription and suppression of HSP70 expression. The direct targets and precise mechanisms that are responsible for the gene expression inhibition, however, remain unknown. Here, we report that TPL inhibits global gene transcription by inducing proteasome-dependent degradation of the largest subunit of RNA polymerase II (Rpb1) in cancer cells. In the presence of proteosome inhibitor MG132, TPL treatment causes hyperphosphorylation of Rpb1 by activation of upstream protein kinases such as Positive Transcription Elongation Factor b (P-TEFb) in a time and dose dependent manner. Also, we observe that short time incubation of TPL with cancer cells induces DNA damage. In conclusion, we propose a new mechanism of how TPL works in killing cancer. TPL inhibits global transcription in cancer cells by induction of phosphorylation and subsequent proteasome-dependent degradation of Rpb1 resulting in global gene transcription, which may explain the high potency of TPL in killing cancer.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay.

          A method for measuring DNA damage to individual cells, based on the technique of microelectrophoresis, was described by Ostling and Johanson in 1984 (Biochem. Biophys. Res. Commun. 123, 291-298). Cells embedded in agarose are lysed, subjected briefly to an electric field, stained with a fluorescent DNA-binding stain, and viewed using a fluorescence microscope. Broken DNA migrates farther in the electric field, and the cell then resembles a "comet" with a brightly fluorescent head and a tail region which increases as damage increases. We have used video image analysis to define appropriate "features" of the comet as a measure of DNA damage, and have quantified damage and repair by ionizing radiation. The assay was optimized for lysing solution, lysing time, electrophoresis time, and propidium iodide concentration using Chinese hamster V79 cells. To assess heterogeneity of response of normal versus malignant cells, damage to both tumor cells and normal cells within mouse SCC-VII tumors was assessed. Tumor cells were separated from macrophages using a cell-sorting method based on differential binding of FITC-conjugated goat anti-mouse IgG. The "tail moment", the product of the amount of DNA in the tail and the mean distance of migration in the tail, was the most informative feature of the comet image. Tumor and normal cells showed significant heterogeneity in damage produced by ionizing radiation, although the average amount of damage increased linearly with dose (0-15 Gy) and suggested similar net radiosensitivities for the two cell types. Similarly, DNA repair rate was not significantly different for tumor and normal cells, and most of the cells had repaired the damage by 30 min following exposure to 15 Gy. The heterogeneity in response did not appear to be a result of differences in response through the cell cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From traditional Chinese medicine to rational cancer therapy.

            Many natural products and derivatives thereof belong to the standard repertoire of cancer chemotherapy. Examples are Vinca alkaloids, taxanes and camptothecins. In recent years, the potential of natural products from plants, notably from medicinal plants used in traditional Chinese medicine (TCM), has been recognized by the scientific community in the Western world. To provide an example of the most recent developments in this field, we have selected several compounds, namely artesunate, homoharringtonine, arsenic trioxide and cantharidin, that are found in natural TCM products and that have the potential for use in cancer therapy. Controlled clinical studies have shown that homoharringtonine and arsenic trioxide can exert profound activity against leukaemia. Increased knowledge of the molecular mechanisms of TCM-derived drugs and recent developments in their applications demonstrate that the combination of TCM with modern cutting-edge technologies provides an attractive strategy for the development of novel and improved cancer therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Actinomycin and DNA transcription.

              Recent advances in understanding how actinomycin binds to DNA have suggested its mechanism of action. Actinomycin binds to a premelted DNA conformation present within the transcriptional complex. This immobilizes the complex, interfering with the elongation of growing RNA chains. The model has a number of implications for understanding RNA synthesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                13 September 2011
                : 6
                : 9
                : e23993
                Affiliations
                [1 ]Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
                [2 ]College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
                French National Centre for Scientific Research, France
                Author notes

                Conceived and designed the experiments: YW QY. Performed the experiments: YW LH. Analyzed the data: YW QY. Contributed reagents/materials/analysis tools: YW JJL LH QY. Wrote the paper: YW QY. Performed the comet assay: YW JJL.

                Article
                PONE-D-10-06366
                10.1371/journal.pone.0023993
                3172214
                21931633
                3c74c07f-0f14-4807-91fd-e8e6948b953a
                Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 December 2010
                : 3 August 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Biochemistry
                Proteins
                Protein Chemistry
                Chemical Biology
                Drug Discovery
                Enzymes
                Small Molecules
                Molecular Cell Biology
                Gene Expression
                DNA transcription
                Chemistry
                Phytochemistry
                Phytochemicals
                Medicine
                Oncology
                Basic Cancer Research

                Uncategorized
                Uncategorized

                Comments

                Comment on this article