Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lateral hypothalamic orexin and melanin-concentrating hormone neurons provide direct input to gonadotropin-releasing hormone neurons in the human

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior.

          The hypothalamus plays a central role in the integrated control of feeding and energy homeostasis. We have identified two novel neuropeptides, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors. These peptides, termed orexin-A and -B, have no significant structural similarities to known families of regulatory peptides. prepro-orexin mRNA and immunoreactive orexin-A are localized in neurons within and around the lateral and posterior hypothalamus in the adult rat brain. When administered centrally to rats, these peptides stimulate food consumption. prepro-orexin mRNA level is up-regulated upon fasting, suggesting a physiological role for the peptides as mediators in the central feedback mechanism that regulates feeding behavior.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity.

            We describe a hypothalamus-specific mRNA that encodes preprohypocretin, the putative precursor of a pair of peptides that share substantial amino acid identities with the gut hormone secretin. The hypocretin (Hcrt) protein products are restricted to neuronal cell bodies of the dorsal and lateral hypothalamic areas. The fibers of these neurons are widespread throughout the posterior hypothalamus and project to multiple targets in other areas, including brainstem and thalamus. Hcrt immunoreactivity is associated with large granular vesicles at synapses. One of the Hcrt peptides was excitatory when applied to cultured, synaptically coupled hypothalamic neurons, but not hippocampal neurons. These observations suggest that the hypocretins function within the CNS as neurotransmitters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Origin of luteinizing hormone-releasing hormone neurons.

              Neurons expressing luteinizing hormone-releasing hormone (LHRH), found in the septal-preoptic nuclei and hypothalamus, control the release of gonadotropic hormones from the anterior pituitary gland and facilitate reproductive behaviour. LHRH-expressing neurons are also found in the nervus terminalis, a cranial nerve that is a part of the accessory olfactory system and which projects directly from the nose to the septal-preoptic nuclei in the brain. During development, LHRH-immunoreactivity is detected in the peripheral parts of the nervus terminalis before it is found in the brain. Using a combination of LHRH immunocytochemistry and tritiated thymidine autoradiography in fetal mice, we show that LHRH neurons originate in the medial olfactory placode of the developing nose, migrate across the nasal septum and enter the forebrain with the nervus terminalis, arching into the septal-preoptic area and hypothalamus. Clinically, this migratory route for LHRH-expressing neurons could explain the deficiency of gonadotropins seen in 'Kallmann's syndrome' (hypogonadotropic hypogonadism with anosmia).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                04 September 2015
                2015
                : 9
                : 348
                Affiliations
                [1] 1Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
                [2] 2Department and Clinic for Production Animals, Faculty of Veterinary Science, Szent István University Üllő, Hungary
                [3] 3MTA-SZIE Large Animal Clinical Research Group, Dóra major Üllő, Hungary
                [4] 4Department of Forensic Medicine, Faculty of Medicine of the University of Debrecen Debrecen, Hungary
                [5] 5Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University Budapest, Hungary
                Author notes

                Edited by: Elena García-Martín, Universidad de Extremadura, Spain

                Reviewed by: Zoltan Molnar, University of Oxford, UK; Alexander C. Jackson, University of Connecticut, USA

                *Correspondence: Erik Hrabovszky, Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, 1083 Budapest, Hungary hrabovszky.erik@ 123456koki.mta.hu

                These authors have contributed equally to this work.

                Article
                10.3389/fncel.2015.00348
                4559643
                3c8e4629-1897-4f9a-a349-6874a1469893
                Copyright © 2015 Skrapits, Kanti, Savanyú, Maurnyi, Szenci, Horváth, Borsay, Herczeg, Liposits and Hrabovszky.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 July 2015
                : 20 August 2015
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 89, Pages: 13, Words: 9355
                Categories
                Neuroscience
                Original Research

                Neurosciences
                hypothalamus,human,immunohistochemistry,melanin-concentrating hormone,orexin
                Neurosciences
                hypothalamus, human, immunohistochemistry, melanin-concentrating hormone, orexin

                Comments

                Comment on this article