29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cooperative social clusters are not destroyed by dispersal in a ciliate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The evolution of social cooperation is favored by aggregative behavior to facilitate stable social structure and proximity among kin. High dispersal rates reduce group stability and kin cohesion, so it is generally assumed that there is a fundamental trade-off between cooperation and dispersal. However, empirical tests of this relationship are rare. We tested this assumption experimentally using ten genetically isolated strains of a ciliate, Tetrahymena thermophila.

          Results

          The propensity for social aggregation was greater in strains with reduced cell quality and lower growth performance. While we found a trade-off between costly aggregation and local dispersal in phenotypic analyses, aggregative strains showed a dispersal polymorphism by producing either highly sedentary or long-distance dispersive cells, in contrast to less aggregative strains whose cells were monomorphic local dispersers.

          Conclusion

          High dispersal among aggregative strains may not destroy group stability in T. thermophila because the dispersal polymorphism allows social strains to more readily escape kin groups than less aggregative strains, yet still benefit from stable group membership among sedentary morphs. Such dispersal polymorphisms should be common in other social organisms, serving to alter the nature of the negative impact of dispersal on social evolution.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of cooperation.

          Cooperation in organisms, whether bacteria or primates, has been a difficulty for evolutionary theory since Darwin. On the assumption that interactions between pairs of individuals occur on a probabilistic basis, a model is developed based on the concept of an evolutionarily stable strategy in the context of the Prisoner's Dilemma game. Deductions from the model, and the results of a computer tournament show how cooperation based on reciprocity can get started in an asocial world, can thrive while interacting with a wide range of other strategies, and can resist invasion once fully established. Potential applications include specific aspects of territoriality, mating, and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Social evolution theory for microorganisms.

            Microorganisms communicate and cooperate to perform a wide range of multicellular behaviours, such as dispersal, nutrient acquisition, biofilm formation and quorum sensing. Microbiologists are rapidly gaining a greater understanding of the molecular mechanisms involved in these behaviours, and the underlying genetic regulation. Such behaviours are also interesting from the perspective of social evolution - why do microorganisms engage in these behaviours given that cooperative individuals can be exploited by selfish cheaters, who gain the benefit of cooperation without paying their share of the cost? There is great potential for interdisciplinary research in this fledgling field of sociomicrobiology, but a limiting factor is the lack of effective communication of social evolution theory to microbiologists. Here, we provide a conceptual overview of the different mechanisms through which cooperative behaviours can be stabilized, emphasizing the aspects most relevant to microorganisms, the novel problems that microorganisms pose and the new insights that can be gained from applying evolutionary theory to microorganisms.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              How Does It Feel to Be Like a Rolling Stone? Ten Questions About Dispersal Evolution

                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2009
                14 October 2009
                : 9
                : 251
                Affiliations
                [1 ]Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, 1348 Louvain-la-Neuve, Belgium
                [2 ]Department of Biology, Queens College, City University of New York, Flushing, NY, USA
                [3 ]Station d'Ecologie Expérimentale du CNRS à Moulis USR2936, 09200 Saint-Girons, France
                Article
                1471-2148-9-251
                10.1186/1471-2148-9-251
                2768715
                19828046
                3cf20740-c1e2-48d5-b7d3-a60108da4188
                Copyright © 2009 Schtickzelle et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 April 2009
                : 14 October 2009
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article