55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Profiling of Giardia intestinalis Using Strand-specific RNA-Seq

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms. Phenotypical differences have been documented between assemblages and genome sequences are available for A, B and E. We have characterized and compared the polyadenylated transcriptomes of assemblages A, B and E. Four genetically different isolates were studied (WB (AI), AS175 (AII), P15 (E) and GS (B)) using paired-end, strand-specific RNA-seq. Most of the genome was transcribed in trophozoites grown in vitro, but at vastly different levels. RNA-seq confirmed many of the present annotations and refined the current genome annotation. Gene expression divergence was found to recapitulate the known phylogeny, and uncovered lineage-specific differences in expression. Polyadenylation sites were mapped for over 70% of the genes and revealed many examples of conserved and unexpectedly long 3′ UTRs. 28 open reading frames were found in a non-transcribed gene cluster on chromosome 5 of the WB isolate. Analysis of allele-specific expression revealed a correlation between allele-dosage and allele expression in the GS isolate. Previously reported cis-splicing events were confirmed and global mapping of cis-splicing identified only one novel intron. These observations can possibly explain differences in host-preference and symptoms, and it will be the basis for further studies of Giardia pathogenesis and biology.

          Author Summary

          Giardia is a single cell intestinal parasite and a common cause of diarrhea in humans and animals. Giardia is an unusual eukaryote by possessing two nuclei, a highly reduced genome and simple transcriptional apparatus. We have characterized the transcriptome of Giardia at single nucleotide resolution, which allowed the calculation of digital gene expression values for the complete set of genes. We performed a comparison of gene expression divergence across three genotypes. Most of the genes were transcribed, and the data were used to refine and correct gene models. Several gene expression differences were identified between the genotypes. A non-transcribed cluster of genes was detected on chromosome 5, likely representing a silenced region. The data also allowed mapping of transcript termini, which provided the first global view of 3′ untranslated regions in this parasite. This study also gives the first genome-wide evidence of transcription of allelic variants in Giardia. In this study, we provide novel insights into the transcriptome of an important human pathogen and model eukaryote. The findings reported here likely relate to the lifestyle of this parasite and its adaptation to parasitism. The data provide starting points for functional investigation of Giardia's biology and diplomonads generally.

          Related collections

          Author and article information

          Contributors
          Role: Editor
          Journal
          PLoS Comput Biol
          PLoS Comput. Biol
          plos
          ploscomp
          PLoS Computational Biology
          Public Library of Science (San Francisco, USA )
          1553-734X
          1553-7358
          March 2013
          March 2013
          28 March 2013
          : 9
          : 3
          : e1003000
          Affiliations
          [1 ]Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
          [2 ]Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
          National University of Singapore, Singapore
          Author notes

          The authors have declared that no competing interests exist.

          Conceived and designed the experiments: OF JJH BA SGS. Performed the experiments: OF JJH EE JA MF. Analyzed the data: OF JJH SGS. Contributed reagents/materials/analysis tools: OF JJH EE BA SGS. Wrote the paper: OF JJH EE BA SGS.

          Article
          PCOMPBIOL-D-12-01572
          10.1371/journal.pcbi.1003000
          3610916
          23555231
          3d324800-3b7f-47c1-b5f5-e22a34f7dc32
          Copyright @ 2013

          This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

          History
          : 2 October 2012
          : 2 February 2013
          Page count
          Pages: 18
          Funding
          This study was supported by the Swedish National Research Agencies FORMAS ( www.formas.se). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
          Categories
          Research Article
          Biology
          Computational Biology
          Genomics
          Genome Analysis Tools
          Transcriptomes
          Genomics
          Genome Analysis Tools
          Transcriptomes
          Microbiology
          Protozoology
          Parastic Protozoans
          Giardia Lamblia

          Quantitative & Systems biology
          Quantitative & Systems biology

          Comments

          Comment on this article