17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hemophilia A (HA) and hemophilia B (HB) are X-linked bleeding disorders due to inheritable deficiencies in either coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Recently, gene therapy clinical trials with adeno-associated virus (AAV) vectors and protein-engineered transgenes, B-domain deleted (BDD) FVIII and FIX-Padua, have reported near-phenotypic cures in subjects with HA and HB, respectively. Here, we review the biology and the clinical development of FVIII-BDD and FIX-Padua as transgenes. We also examine alternative bioengineering strategies for FVIII and FIX, as well as the immunological challenges of these approaches. Other engineered proteins and their potential use in gene therapy for hemophilia with inhibitors are also discussed. Continued advancement of gene therapy for HA and HB using protein-engineered transgenes has the potential to alleviate the substantial medical and psychosocial burdens of the disease.

          Related collections

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: not found

          Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia.

          Effective ways to prevent arthropathy in severe hemophilia are unknown. We randomly assigned young boys with severe hemophilia A to regular infusions of recombinant factor VIII (prophylaxis) or to an enhanced episodic infusion schedule of at least three doses totaling a minimum of 80 IU of factor VIII per kilogram of body weight at the time of a joint hemorrhage. The primary outcome was the incidence of bone or cartilage damage as detected in index joints (ankles, knees, and elbows) by radiography or magnetic resonance imaging (MRI). Sixty-five boys younger than 30 months of age were randomly assigned to prophylaxis (32 boys) or enhanced episodic therapy (33 boys). When the boys reached 6 years of age, 93% of those in the prophylaxis group and 55% of those in the episodic-therapy group were considered to have normal index-joint structure on MRI (P=0.006). The relative risk of MRI-detected joint damage with episodic therapy as compared with prophylaxis was 6.1 (95% confidence interval, 1.5 to 24.4). The mean annual numbers of joint and total hemorrhages were higher at study exit in the episodic-therapy group than in the prophylaxis group (P<0.001 for both comparisons). High titers of inhibitors of factor VIII developed in two boys who received prophylaxis; three boys in the episodic-therapy group had a life-threatening hemorrhage. Hospitalizations and infections associated with central-catheter placement did not differ significantly between the two groups. Prophylaxis with recombinant factor VIII can prevent joint damage and decrease the frequency of joint and other hemorrhages in young boys with severe hemophilia A. (ClinicalTrials.gov number, NCT00207597 [ClinicalTrials.gov].). Copyright 2007 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endoplasmic reticulum stress in liver disease.

            The unfolded protein response (UPR) is activated upon the accumulation of misfolded proteins in the endoplasmic reticulum (ER) that are sensed by the binding immunoglobulin protein (BiP)/glucose-regulated protein 78 (GRP78). The accumulation of unfolded proteins sequesters BiP so it dissociates from three ER-transmembrane transducers leading to their activation. These transducers are inositol requiring (IRE) 1α, PKR-like ER kinase (PERK), and activating transcription factor (ATF) 6α. PERK phosphorylates eukaryotic initiation factor 2 alpha (eIF2α) resulting in global mRNA translation attenuation, and concurrently selectively increases the translation of several mRNAs, including the transcription factor ATF4, and its downstream target CHOP. IRE1α has kinase and endoribonuclease (RNase) activities. IRE1α autophosphorylation activates the RNase activity to splice XBP1 mRNA, to produce the active transcription factor sXBP1. IRE1α activation also recruits and activates the stress kinase JNK. ATF6α transits to the Golgi compartment where it is cleaved by intramembrane proteolysis to generate a soluble active transcription factor. These UPR pathways act in concert to increase ER content, expand the ER protein folding capacity, degrade misfolded proteins, and reduce the load of new proteins entering the ER. All of these are geared toward adaptation to resolve the protein folding defect. Faced with persistent ER stress, adaptation starts to fail and apoptosis occurs, possibly mediated through calcium perturbations, reactive oxygen species, and the proapoptotic transcription factor CHOP. The UPR is activated in several liver diseases; including obesity associated fatty liver disease, viral hepatitis, and alcohol-induced liver injury, all of which are associated with steatosis, raising the possibility that ER stress-dependent alteration in lipid homeostasis is the mechanism that underlies the steatosis. Hepatocyte apoptosis is a pathogenic event in several liver diseases, and may be linked to unresolved ER stress. If this is true, restoration of ER homeostasis prior to ER stress-induced cell death may provide a therapeutic rationale in these diseases. Herein we discuss each branch of the UPR and how they may impact hepatocyte function in different pathologic states. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Emerging Issues in AAV-Mediated In Vivo Gene Therapy

              In recent years, the number of clinical trials in which adeno-associated virus (AAV) vectors have been used for in vivo gene transfer has steadily increased. The excellent safety profile, together with the high efficiency of transduction of a broad range of target tissues, has established AAV vectors as the platform of choice for in vivo gene therapy. Successful application of the AAV technology has also been achieved in the clinic for a variety of conditions, including coagulation disorders, inherited blindness, and neurodegenerative diseases, among others. Clinical translation of novel and effective “therapeutic products” is, however, a long process that involves several cycles of iterations from bench to bedside that are required to address issues encountered during drug development. For the AAV vector gene transfer technology, several hurdles have emerged in both preclinical studies and clinical trials; addressing these issues will allow in the future to expand the scope of AAV gene transfer as a therapeutic modality for a variety of human diseases. In this review, we will give an overview on the biology of AAV vector, discuss the design of AAV-based gene therapy strategies for in vivo applications, and present key achievements and emerging issues in the field. We will use the liver as a model target tissue for gene transfer based on the large amount of data available from preclinical and clinical studies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Methods Clin Dev
                Mol Ther Methods Clin Dev
                Molecular Therapy. Methods & Clinical Development
                American Society of Gene & Cell Therapy
                2329-0501
                31 December 2018
                15 March 2019
                31 December 2018
                : 12
                : 184-201
                Affiliations
                [1 ]The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
                [2 ]Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
                [3 ]Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA
                Author notes
                []Corresponding author: Valder R. Arruda, MD, PhD, The Children’s Hospital of Philadelphia, 3501 Civic Center Boulevard, 5056 Colket Translational Research Center, Philadelphia, PA 19104, USA. arruda@ 123456email.chop.edu
                Article
                S2329-0501(18)30131-1
                10.1016/j.omtm.2018.12.007
                6349562
                30705923
                3d352bf7-6706-418c-94c2-f2b1086bc0a3
                © 2018.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                hemophilia a,hemophilia b,gene therapy,bioengineering,factor viii,factor ix,factor ix padua,b-domain delete factor viii,immunogenicity,protein engineering

                Comments

                Comment on this article